示例#1
0
def detect_img_folder(img_folder, out_folder, yolo):
    mkdir_if_not_exist(out_folder)
    path_list, name_list = traverse_dir_files(img_folder)
    print_info('图片数: %s' % len(path_list))

    _, imgs_names = traverse_dir_files(out_folder)

    count = 0
    for path, name in zip(path_list, name_list):
        if path.endswith('.gif'):
            continue

        out_name = name + '.d.jpg'
        if out_name in imgs_names:
            print_info('已检测: %s' % name)
            continue

        print_info('检测图片: %s' % name)

        try:
            image = Image.open(path)
            out_file = os.path.join(ROOT_DIR, 'face', 'yolov3', 'output_data',
                                    'logAll_res.txt')
            r_image = yolo.detect_image(image, ('logAll/' + name), out_file)
            r_image.save(os.path.join(out_folder, name + '.d.jpg'))
        except Exception as e:
            print(e)
            pass

        count += 1
        if count % 100 == 0:
            print_info('已检测: %s' % count)
    yolo.close_session()
示例#2
0
def format_img_and_anno(img_folder):
    """
    格式化输出。图片和标注文件夹
    :param img_folder: 图片文件夹
    :return:
    """
    file_paths, file_names = traverse_dir_files(img_folder)
    img_dict = dict()  # 将标注和图片路径,生成一个字典

    for file_path, file_name in zip(file_paths, file_names):
        if file_name.endswith('.jpg'):
            name = file_name.replace('.jpg', '')
            if name not in img_dict:
                img_dict[name] = (None, None)
            (img_p, anno_p) = img_dict[name]
            img_dict[name] = (file_path, anno_p)

        if file_name.endswith('.xml'):
            name = file_name.replace('.xml', '')
            if name not in img_dict:
                img_dict[name] = (None, None)
            (img_p, anno_p) = img_dict[name]
            img_dict[name] = (img_p, file_path)

    print_info('图片数: {}'.format(len(img_dict.keys())))
    return img_dict
示例#3
0
def data_processor_testV3():
    dataset_dir = os.path.join(DATASET_DIR, 's2a4zsV4')

    # person_path = "/Users/wangchenlong/Downloads/seeprettyface_asian_stars"
    person_path = "/Users/wangchenlong/Downloads/SCUT-FBP5500_v2/Images"
    paths_list, names_list = traverse_dir_files(person_path)

    trainA_dir = os.path.join(dataset_dir, 'trainA')
    testA_dir = os.path.join(dataset_dir, 'testA')
    mkdir_if_not_exist(trainA_dir)
    mkdir_if_not_exist(testA_dir)

    train_size = 5000
    test_size = 100
    print_size = 100

    count = 0
    random.shuffle(paths_list)
    for path in paths_list:
        img = cv2.imread(path)
        img = cv2.resize(img, (256, 256))
        if count < train_size:
            file_name = os.path.join(trainA_dir,
                                     u"c_{:04d}.jpg".format(count + 1))
            cv2.imwrite(file_name, img)
        else:
            file_name = os.path.join(testA_dir,
                                     u"c_{:04d}.jpg".format(count + 1))
            cv2.imwrite(file_name, img)
        count += 1
        if count % print_size == 0:
            print(u'[Info] run count: {}'.format(count))
        if count == train_size + test_size:
            break
    print('[Info] 数据处理完成')
示例#4
0
    def write_frames_to_vid(self, frames_folder, out_vid_path):
        paths_list, names_list = traverse_dir_files(frames_folder)

        img_list = []
        for path, name in zip(paths_list, names_list):
            img = cv2.imread(path)
            img_list.append(img)

        # fps: 29, h: 1280, w: 720
        write_video(out_vid_path, img_list, 29, 1280, 720)
示例#5
0
文件: VSFA.py 项目: SpikeKing/VSFA
def get_livevqc_index(feature_dir):
    from utils.project_utils import traverse_dir_files
    paths_list, names_list = traverse_dir_files(feature_dir, ext='.npy')

    res_names = set()
    for name in names_list:
        res_names.add(name.split('_')[0])

    res_names = sorted(list(res_names))
    return res_names
示例#6
0
def save_video():
    img_dir = os.path.join(DATA_DIR, 'frames')
    paths_list, names_list = traverse_dir_files(img_dir)
    frame_list = []
    for name, path in zip(names_list, paths_list):
        frame = cv.imread(path)
        frame_list.append(frame)

    from_video = "normal_video.mp4"
    cap, n_frame, fps, h, w = init_vid(from_video)

    video_path = "norm.out.mp4"
    write_video(video_path, frame_list, fps, h, w)
示例#7
0
def folder_test():
    img_dir = os.path.join(IMGS_DIR, 'tests')
    out_dir = os.path.join(IMGS_DIR, 'tests-out')

    paths_list, names_list = traverse_dir_files(img_dir)
    gp = GazePredicter()

    for img_path, name in zip(paths_list, names_list):
        print('[Info] 处理图像: {}'.format(name))
        face_dict = gp.predict_path(img_path)
        img_op = face_dict['img_draw']
        out_path = os.path.join(out_dir, name + ".out.jpg")
        cv2.imwrite(out_path, img_op)
示例#8
0
    def process_dataset(self):
        """
        处理数据集
        """
        c_paths_list, c_names_list = traverse_dir_files(self.cartoons_path)
        p_paths_list, p_names_list = traverse_dir_files(self.persons_path)

        random.seed(47)
        random.shuffle(c_paths_list)
        random.shuffle(p_paths_list)

        train_size = 1500  # 训练集量
        test_size = 100  # 测试集量
        print_size = 100

        count = 0
        train_person_dir = os.path.join(ROOT_DIR, 'dataset', 's2a4zsV1',
                                        'trainA')
        test_person_dir = os.path.join(ROOT_DIR, 'dataset', 's2a4zsV1',
                                       'testA')
        mkdir_if_not_exist(train_person_dir)
        mkdir_if_not_exist(test_person_dir)

        print('[Info] 真人样本总数: {}'.format(len(p_paths_list)))
        for p_path in p_paths_list:
            try:
                p_img = cv2.imread(p_path)
                p_img = cv2.resize(p_img, (256, 256))

                if count < train_size:
                    p_file_name = os.path.join(
                        train_person_dir, u"p_{:04d}.jpg".format(count + 1))
                else:
                    p_file_name = os.path.join(
                        test_person_dir, u"p_{:04d}.jpg".format(count + 1))

                cv2.imwrite(p_file_name, p_img)
                count += 1
            except Exception as e:
                print('[Error] error {}'.format(e))
                continue

            if count % print_size == 0:
                print(u'[Info] run count: {}'.format(count))

            if count == train_size + test_size:
                break

        train_cartoon_dir = os.path.join(ROOT_DIR, 'dataset', 's2a4zsV1',
                                         'trainB')
        test_cartoon_dir = os.path.join(ROOT_DIR, 'dataset', 's2a4zsV1',
                                        'testB')
        mkdir_if_not_exist(train_cartoon_dir)
        mkdir_if_not_exist(test_cartoon_dir)

        count = 0
        print('[Info] 卡通样本总数: {}'.format(len(c_paths_list)))
        for c_path in c_paths_list:
            try:
                c_img = cv2.imread(c_path)
                c_img = cv2.resize(c_img, (256, 256))

                if count < train_size:
                    c_file_name = os.path.join(
                        train_cartoon_dir, u"c_{:04d}.jpg".format(count + 1))
                    cv2.imwrite(c_file_name, c_img)
                else:
                    c_file_name = os.path.join(
                        test_cartoon_dir, u"c_{:04d}.jpg".format(count + 1))
                    cv2.imwrite(c_file_name, c_img)

                count += 1
            except Exception as e:
                print('[Error] error {}'.format(e))
                continue

            if count % print_size == 0:
                print(u'[Info] run count: {}'.format(count))

            if count == train_size + test_size:
                break

        print('[Info] 数据处理完成')