def select_actions(self, obs, raw_context): # Repeat the obs as what BCQ has done, # candidate_size here indicates how many # candidate actions we need. obs = from_numpy(np.tile(obs.reshape(1, -1), (self.candidate_size, 1))) if len(raw_context) == 0: # In the beginning, the inferred_mdp is set to zero vector. inferred_mdp = ptu.zeros((1, self.f.latent_dim)) else: # Construct the context from raw context context = from_numpy(np.concatenate(raw_context, axis=0))[None] inferred_mdp = self.f(context) with torch.no_grad(): inferred_mdp = inferred_mdp.repeat(self.candidate_size, 1) z = from_numpy( np.random.normal(0, 1, size=(obs.size(0), self.vae_latent_dim))).clamp( -0.5, 0.5).to(ptu.device) candidate_actions = self.vae_decoder(obs, z, inferred_mdp) perturbed_actions = self.perturbation_generator.get_perturbed_actions( obs, candidate_actions, inferred_mdp) qv = self.Qs(obs, perturbed_actions, inferred_mdp) ind = qv.max(0)[1] return ptu.get_numpy(perturbed_actions[ind])
def _get_prod_of_gauss_mask(num_selected, desired_len): # Taken from # https://discuss.pytorch.org/t/create-a-2d-tensor-with-varying-lengths-of-one-in-each-row/25359 # desired_length is the desired size of the second dimension of the masks seq_lens = ptu.from_numpy(np.array(num_selected)).unsqueeze(-1) max_len = torch.max(seq_lens) # create tensor of suitable shape and same number of dimensions range_tensor = torch.arange(max_len).unsqueeze(0) range_tensor = range_tensor.to(ptu.device) range_tensor = range_tensor.expand(seq_lens.size(0), range_tensor.size(1)) # until this step, we only created auxiliary tensors (you may already have from previous steps) # the real mask tensor is created with binary masking: mask_tensor = (range_tensor < seq_lens) mask_tensor = mask_tensor.type(torch.float) current_len = mask_tensor.shape[1] pad = ptu.zeros(mask_tensor.shape[0], desired_len - current_len) mask_tensor = torch.cat((mask_tensor, pad), dim=1) return mask_tensor
def rsample(self, return_pretanh_value=False): """ Sampling in the reparameterization case. """ z = (self.normal_mean + self.normal_std * Normal(ptu.zeros(self.normal_mean.size()), ptu.ones(self.normal_std.size())).sample()) z.requires_grad_() if return_pretanh_value: return torch.tanh(z), z else: return torch.tanh(z)
def compute_kl_div(self): ''' compute KL( q(z|c) || r(z) ) ''' prior = torch.distributions.Normal(ptu.zeros(self.latent_dim), ptu.ones(self.latent_dim)) posteriors = [ torch.distributions.Normal(mu, torch.sqrt(var)) for mu, var in zip( torch.unbind(self.z_means), torch.unbind(self.z_vars)) ] kl_divs = [ torch.distributions.kl.kl_divergence(post, prior) for post in posteriors ] kl_div_sum = torch.sum(torch.stack(kl_divs)) return kl_div_sum
def clear_z(self, num_tasks=1): ''' reset q(z|c) to the prior sample a new z from the prior ''' # reset distribution over z to the prior mu = ptu.zeros(num_tasks, self.latent_dim) var = ptu.ones(num_tasks, self.latent_dim) self.z_means = mu self.z_vars = var # sample a new z from the prior self.sample_z() # reset the context collected so far self.context = None
def select_actions(self, obs, raw_context): # Repeat the obs as what BCQ has done, # candidate_size here indicates how many # candidate actions we need. if len(raw_context) == 0: # In the beginning, the inferred_mdp is set to zero vector. inferred_mdp = ptu.zeros( (1, self.policy.mlp_encoder.encoder_latent_dim)) else: # Construct the context from raw context context = from_numpy(np.concatenate(raw_context, axis=0))[None] inferred_mdp = self.policy.mlp_encoder(context) # obs = torch.cat([obs, inferred_mdp], dim=1) action = self.policy.select_action(obs, get_numpy(inferred_mdp)) return action
def __init__( self, policy_producer, qf1, target_qf1, qf2, target_qf2, lr, action_space=None, discount=0.99, reward_scale=1.0, optimizer_class=optim.Adam, soft_target_tau_qf=5e-3, soft_target_tau_policy=1e-2, target_update_period=1, use_automatic_entropy_tuning=True, target_entropy=None, ): super().__init__() """ The class state which should not mutate """ self.use_automatic_entropy_tuning = use_automatic_entropy_tuning if self.use_automatic_entropy_tuning: if target_entropy: self.target_entropy = target_entropy else: # heuristic value from Tuomas self.target_entropy = - \ np.prod(action_space.shape).item() self.soft_target_tau_qf = soft_target_tau_qf self.soft_target_tau_policy = soft_target_tau_policy self.target_update_period = target_update_period self.qf_criterion = nn.MSELoss() self.vf_criterion = nn.MSELoss() self.discount = discount self.reward_scale = reward_scale """ The class mutable state """ self.policy = policy_producer() self.target_policy = policy_producer() self.target_policy.load_state_dict(self.policy.state_dict()) self.qf1 = qf1 self.qf2 = qf2 self.target_qf1 = target_qf1 self.target_qf2 = target_qf2 if self.use_automatic_entropy_tuning: self.log_alpha = ptu.zeros(1, requires_grad=True) self.alpha_optimizer = optimizer_class( [self.log_alpha], lr=3e-4, ) self.policy_optimizer = optimizer_class( self.policy.parameters(), lr=lr, ) self.policy_imitation_optimizer = optimizer_class( self.policy.parameters(), lr=3e-4, ) self.qf1_optimizer = optimizer_class( self.qf1.parameters(), lr=lr, ) self.qf2_optimizer = optimizer_class( self.qf2.parameters(), lr=lr, ) print('----------------------------------') print('qf_optimizer learning rate: ', lr) print('soft_target_tau_qf: ', soft_target_tau_qf) print('soft_target_tau_policy: ', soft_target_tau_policy) print('----------------------------------') self.eval_statistics = OrderedDict() self._n_train_steps_total = 0 self._need_to_update_eval_statistics = True
def train(self, batch, batch_idxes): """ Unpack data from the batch """ obs = batch['obs'] actions = batch['actions'] contexts = batch['contexts'] num_candidate_context = contexts[0].shape[0] meta_batch_size = batch_idxes.shape[0] num_posterior = meta_batch_size * num_candidate_context contexts = torch.cat(contexts, dim=0) # Get the in_mdp_batch_size in_mdp_batch_size = obs.shape[0] // batch_idxes.shape[0] # Sample z for each state z = self.bcq_polices[0].vae.sample_z(obs).to(ptu.device) target_q = [] target_candidates = [] target_perturbations = [] for i, batch_idx in enumerate(batch_idxes): tq = self.bcq_polices[batch_idx].critic.q1( obs[i * in_mdp_batch_size:(i + 1) * in_mdp_batch_size], actions[i * in_mdp_batch_size:(i + 1) * in_mdp_batch_size]).detach() target_q.append(tq) tc = self.bcq_polices[batch_idx].vae.decode( obs[i * in_mdp_batch_size:(i + 1) * in_mdp_batch_size], z[i * in_mdp_batch_size:(i + 1) * in_mdp_batch_size]).detach() target_candidates.append(tc) tp = self.bcq_polices[batch_idx].get_perturbation( obs[i * in_mdp_batch_size:(i + 1) * in_mdp_batch_size], tc).detach() target_perturbations.append(tp) target_q = torch.cat(target_q, dim=0).squeeze() target_candidates = torch.cat(target_candidates, dim=0) target_perturbations = torch.cat(target_perturbations, dim=0) gt.stamp('get_the_targets', unique=False) """ Compute triplet loss """ self.context_encoder_optimizer.zero_grad() # z_means, z_var: (num_posterior, latent_dim), num_posterior = meta_batch_size * num_candidate_context z_means, z_vars = self.context_encoder.infer_posterior_with_mean_var( contexts) # z_means_interleave: (num_posterior * num_posterior, latent_dim) [1, 2, 3] -> [1, 1, 1, 2, 2, 2, 3, 3, 3] z_means_interleave = torch.repeat_interleave(z_means, num_posterior, dim=0) # z_means_repeat: (num_posterior * num_posterior, latent_dim) [1, 2, 3] -> [1, 2, 3, 2, 3, 1, 3, 1, 2]. # By doing so, it is easy to get the triplet loss z_means_repeat = [] for i in range(meta_batch_size): z_means_repeat.append( torch.cat([ z_means[i * num_candidate_context:], z_means[:i * num_candidate_context] ], dim=0).repeat(num_candidate_context, 1)) z_means_repeat = torch.cat(z_means_repeat, dim=0) # As above z_vars_interleave = torch.repeat_interleave(z_vars, num_posterior, dim=0) z_vars_repeat = [] for i in range(meta_batch_size): z_vars_repeat.append( torch.cat([ z_vars[i * num_candidate_context:], z_vars[:i * num_candidate_context] ], dim=0).repeat(num_candidate_context, 1)) z_vars_repeat = torch.cat(z_vars_repeat, dim=0) gt.stamp('get_repeated_mean_var', unique=False) # log(det(Sigma2) / det(Sigma1)): (num_posterior * num_posterior, 1) kl_divergence = torch.log( torch.prod(z_vars_repeat / z_vars_interleave, dim=1)) # -d kl_divergence -= z_means.shape[-1] # Tr(Sigma2^{-1} * Sigma1) kl_divergence += torch.sum(z_vars_interleave / z_vars_repeat, dim=1) # (m2 - m1).T Sigma2^{-1} (m2 - m1)) kl_divergence += torch.sum( (z_means_repeat - z_means_interleave)**2 / z_vars_repeat, dim=1) # / 2 # (num_posterior, num_posterior): each element kl_{i, j} denotes the kl divergence between the two distributions. # Task number for row: i // num_posterior // num_candidate_context. # for col: j % num_posterior // num_candidate_context. # Batch number for row: i // num_posterior % num_candidate_context. # for col: j % num_posterior % num_candidate_context. kl_divergence = kl_divergence.reshape(num_posterior, num_posterior) / 2 within_task_dist = torch.max(kl_divergence[:, :num_candidate_context], dim=1)[0] across_task_dist = torch.min(kl_divergence[:, num_candidate_context:], dim=1)[0] unscaled_triplet_loss = torch.sum( F.relu(within_task_dist - across_task_dist + self.triplet_margin)) gt.stamp('get_triplet_loss', unique=False) """ Infer the context variables """ index = np.random.choice( num_candidate_context, meta_batch_size ) + num_candidate_context * np.arange(meta_batch_size) # Get the sampled mean and vars for each task. # mean: (meta_batch_size, latent_dim) # var: (meta_batch_size, latent_dim) mean = z_means[index] var = z_vars[index] # Get the inferred MDP # inferred_mdps: (meta_batch_size, latent_dim) inferred_mdps = self.context_encoder.sample_z_from_mean_var(mean, var) inferred_mdps = torch.repeat_interleave(inferred_mdps, in_mdp_batch_size, dim=0) gt.stamp('infer_mdps', unique=False) """ Obtain the KL loss """ prior_mean = ptu.zeros(mean.shape) prior_var = ptu.ones(var.shape) kl_loss = self.kl_lambda * self.context_encoder.compute_kl_div_between_posterior( mean, var, prior_mean, prior_var) gt.stamp('get_kl_loss', unique=False) # triplet_loss = (kl_loss / unscaled_triplet_loss).detach() * unscaled_triplet_loss # posterior_loss = unscaled_triplet_loss + kl_loss # posterior_loss.backward(retain_graph=True) # gt.stamp('get_posterior_gradient', unique=False) """ Obtain the Q-function loss """ self.Qs_optimizer.zero_grad() pred_q = self.Qs(obs, actions, inferred_mdps) pred_q = torch.squeeze(pred_q) qf_loss = F.mse_loss(pred_q, target_q) gt.stamp('get_qf_loss', unique=False) (qf_loss + unscaled_triplet_loss + kl_loss).backward() gt.stamp('get_qf_encoder_gradient', unique=False) self.Qs_optimizer.step() self.context_encoder_optimizer.step() """ Obtain the candidate action and perturbation loss """ self.vae_decoder_optimizer.zero_grad() self.perturbation_generator_optimizer.zero_grad() pred_candidates = self.vae_decoder(obs, z, inferred_mdps.detach()) pred_perturbations = self.perturbation_generator( obs, target_candidates, inferred_mdps.detach()) candidate_loss = F.mse_loss(pred_candidates, target_candidates) perturbation_loss = F.mse_loss(pred_perturbations, target_perturbations) gt.stamp('get_candidate_and_perturbation_loss', unique=False) candidate_loss.backward() perturbation_loss.backward() gt.stamp('get_candidate_and_perturbation_gradient', unique=False) self.vae_decoder_optimizer.step() self.perturbation_generator_optimizer.step() """ Save some statistics for eval """ if self._need_to_update_eval_statistics: self._need_to_update_eval_statistics = False """ Eval should set this to None. This way, these statistics are only computed for one batch. """ self.eval_statistics['qf_loss'] = np.mean(ptu.get_numpy(qf_loss)) self.eval_statistics['unscaled_triplet_loss'] = np.mean( ptu.get_numpy(unscaled_triplet_loss)) self.eval_statistics['kl_loss'] = np.mean(ptu.get_numpy(kl_loss)) self.eval_statistics['candidate_loss'] = np.mean( ptu.get_numpy(candidate_loss)) self.eval_statistics['perturbation_loss'] = np.mean( ptu.get_numpy(perturbation_loss))
def train(self, batch, batch_idxes): """ Unpack data from the batch """ obs = batch['obs'] actions = batch['actions'] contexts = batch['contexts'] num_tasks = batch_idxes.shape[0] gt.stamp('unpack_data_from_the_batch', unique=False) # Get the in_mdp_batch_size obs_dim = obs.shape[1] action_dim = actions.shape[1] in_mdp_batch_size = obs.shape[0] // batch_idxes.shape[0] num_trans_context = contexts.shape[0] // batch_idxes.shape[0] """ Relabel the context batches for each training task """ with torch.no_grad(): contexts_obs_actions = contexts[:, :obs_dim + action_dim] manual_batched_rewards = self.reward_ensemble_predictor.forward_mul_device( contexts_obs_actions) relabeled_rewards = manual_batched_rewards.reshape( num_tasks, self.num_network_ensemble, contexts.shape[0]) gt.stamp('reward_ensemble_forward', unique=False) manual_batched_next_obs = self.transition_ensemble_predictor.forward_mul_device( contexts_obs_actions) relabeled_next_obs = manual_batched_next_obs.reshape( num_tasks, self.num_network_ensemble, contexts.shape[0], obs_dim) gt.stamp('transition_ensemble_forward', unique=False) relabeled_rewards_mean = torch.mean(relabeled_rewards, dim=1).squeeze() relabeled_rewards_std = torch.std(relabeled_rewards, dim=1).squeeze() relabeled_next_obs_mean = torch.mean(relabeled_next_obs, dim=1) relabeled_next_obs_std = torch.std(relabeled_next_obs, dim=1) relabeled_next_obs_std = torch.mean(relabeled_next_obs_std, dim=-1) # Replace the predicted reward with ground truth reward for transitions # with ground truth reward inside the batch for i in range(num_tasks): relabeled_rewards_mean[i, i*num_trans_context: (i+1)*num_trans_context] \ = contexts[i*num_trans_context: (i+1)*num_trans_context, -1] relabeled_next_obs_mean[i, i*num_trans_context: (i+1)*num_trans_context, :] \ = contexts[i*num_trans_context: (i+1)*num_trans_context, obs_dim + action_dim : -1] if self.is_combine: # Set the number to be larger than the self.std_threshold, so that # they will initially be filtered out when producing the mask, # which is conducive to the sampling. relabeled_rewards_std[ i, i * num_trans_context:(i + 1) * num_trans_context] = self.reward_std_threshold + 1.0 relabeled_next_obs_std[ i, i * num_trans_context:(i + 1) * num_trans_context] = self.next_obs_std_threshold + 1.0 else: relabeled_rewards_std[i, i * num_trans_context:(i + 1) * num_trans_context] = 0.0 relabeled_next_obs_std[i, i * num_trans_context:(i + 1) * num_trans_context] = 0.0 mask_reward = relabeled_rewards_std < self.reward_std_threshold mask_reward = mask_reward.type(torch.float) mask_next_obs = relabeled_next_obs_std < self.next_obs_std_threshold mask_next_obs = mask_next_obs.type(torch.float) mask = mask_reward * mask_next_obs mask = mask.type(torch.uint8) mask_from_the_other_tasks = mask.type(torch.uint8).clone() num_context_candidate_each_task = torch.sum(mask, dim=1) mask_list = [] for i in range(num_tasks): assert mask[i].dim() == 1 mask_nonzero = torch.nonzero(mask[i]) mask_nonzero = mask_nonzero.flatten() mask_i = ptu.zeros_like(mask[i], dtype=torch.uint8) assert num_context_candidate_each_task[i].item( ) == mask_nonzero.shape[0] np_ind = np.random.choice(mask_nonzero.shape[0], num_trans_context, replace=False) ind = mask_nonzero[np_ind] mask_i[ind] = 1 if self.is_combine: # Combine the additional relabeledcontext transitions with # the original context transitions with ground-truth rewards mask_i[i * num_trans_context:(i + 1) * num_trans_context] = 1 assert torch.sum(mask_i).item() == 2 * num_trans_context else: assert torch.sum(mask_i).item() == num_trans_context mask_list.append(mask_i) mask = torch.cat(mask_list) mask = mask.type(torch.uint8) repeated_contexts = contexts.repeat(num_tasks, 1) context_without_next_obs_rewards = repeated_contexts[:, :obs_dim + action_dim] assert context_without_next_obs_rewards.shape[ 0] == relabeled_rewards_mean.reshape(-1, 1).shape[0] assert context_without_next_obs_rewards.shape[ 0] == relabeled_next_obs_mean.reshape(-1, obs_dim).shape[0] context_without_next_obs_rewards = context_without_next_obs_rewards[ mask] context_next_obs = relabeled_next_obs_mean.reshape(-1, obs_dim)[mask] context_rewards = relabeled_rewards_mean.reshape(-1, 1)[mask] fast_contexts = torch.cat((context_without_next_obs_rewards, context_next_obs, context_rewards), dim=1) fast_contexts = fast_contexts.reshape(num_tasks, -1, contexts.shape[-1]) gt.stamp('relabel_context_transitions', unique=False) """ Obtain the targets """ with torch.no_grad(): # Sample z for each state z = self.bcq_polices[0].vae.sample_z(obs).to(ptu.device) # Each item in critic_weights is a list that has device count entries # each entry in the critic_weights[i] is a list that has num layer entries # each entry in the critic_weights[i][j] is a tensor of dim (num tasks // device count, layer input size, layer out size) # Similarly to the other weights and biases critic_weights, critic_biases, vae_weights, vae_biases, actor_weights, actor_biases = self.combined_bcq_policies # CRITIC obs_reshaped = obs.reshape(len(batch_idxes), in_mdp_batch_size, -1) acs_reshaped = actions.reshape(len(batch_idxes), in_mdp_batch_size, -1) obs_acs_reshaped = torch.cat((obs_reshaped, acs_reshaped), dim=-1) target_q = batch_bcq(obs_acs_reshaped, critic_weights, critic_biases) target_q = target_q.reshape(-1) # VAE z_reshaped = z.reshape(len(batch_idxes), in_mdp_batch_size, -1) obs_z_reshaped = torch.cat((obs_reshaped, z_reshaped), dim=-1) tc = batch_bcq(obs_z_reshaped, vae_weights, vae_biases) tc = self.bcq_polices[0].vae.max_action * torch.tanh(tc) target_candidates = tc.reshape(-1, tc.shape[-1]) # PERTURBATION tc_reshaped = target_candidates.reshape(len(batch_idxes), in_mdp_batch_size, -1) obs_tc_reshaped = torch.cat((obs_reshaped, tc_reshaped), dim=-1) tp = batch_bcq(obs_tc_reshaped, actor_weights, actor_biases) tp = self.bcq_polices[0].actor.max_action * torch.tanh(tp) target_perturbations = tp.reshape(-1, tp.shape[-1]) gt.stamp('get_the_targets', unique=False) """ Compute the triplet loss """ # ----------------------------------Vectorized------------------------------------------- self.context_encoder_optimizer.zero_grad() anchors = [] positives = [] negatives = [] num_selected_list = [] # Pair of task (i,j) # where no transitions from j is selected by the ensemble of task i exclude_tasks = [] exclude_task_masks = [] for i in range(num_tasks): # Compute the triplet loss for task i for j in range(num_tasks): if j != i: # mask_for_task_j: (num_trans_context, ) # mask_from_the_other_tasks: (num_tasks, num_tasks * num_trans_context) mask_for_task_j = mask_from_the_other_tasks[ i, j * num_trans_context:(j + 1) * num_trans_context] num_selected = int(torch.sum(mask_for_task_j).item()) if num_selected == 0: exclude_tasks.append((i, j)) exclude_task_masks.append(0) else: exclude_task_masks.append(1) # context_trans_all: (num_trans_context, context_dim) context_trans_all = contexts[j * num_trans_context:(j + 1) * num_trans_context] # context_trans_all: (num_selected, context_dim) context_trans_selected = context_trans_all[mask_for_task_j] # relabel_reward_all: (num_trans_context, ) relabel_reward_all = relabeled_rewards_mean[ i, j * num_trans_context:(j + 1) * num_trans_context] # relabel_reward_all: (num_selected, ) relabel_reward_selected = relabel_reward_all[ mask_for_task_j] # relabel_reward_all: (num_selected, 1) relabel_reward_selected = relabel_reward_selected.reshape( -1, 1) # relabel_next_obs_all: (num_trans_context, obs_dim) relabel_next_obs_all = relabeled_next_obs_mean[ i, j * num_trans_context:(j + 1) * num_trans_context] # relabel_next_obs_all: (num_selected, obs_dim) relabel_next_obs_selected = relabel_next_obs_all[ mask_for_task_j] # context_trans_selected_relabel: (num_selected, context_dim) context_trans_selected_relabel = torch.cat([ context_trans_selected[:, :obs_dim + action_dim], relabel_next_obs_selected, relabel_reward_selected ], dim=1) # c_{i} ind = np.random.choice(num_trans_context, num_selected, replace=False) # Next 2 lines used for comparing to sequential version # ind = ind_list[count] # count += 1 # context_trans_task_i: (num_trans_context, context_dim) context_trans_task_i = contexts[i * num_trans_context:(i + 1) * num_trans_context] # context_trans_task_i: (num_selected, context_dim) context_trans_task_i_sampled = context_trans_task_i[ind] # Pad the contexts with 0 tensor num_to_pad = num_trans_context - num_selected # pad_zero_tensor: (num_to_pad, context_dim) pad_zero_tensor = ptu.zeros( (num_to_pad, context_trans_selected.shape[1])) num_selected_list.append(num_selected) # Dim: (1, num_trans_context, context_dim) context_trans_selected = torch.cat( [context_trans_selected, pad_zero_tensor], dim=0) context_trans_selected_relabel = torch.cat( [context_trans_selected_relabel, pad_zero_tensor], dim=0) context_trans_task_i_sampled = torch.cat( [context_trans_task_i_sampled, pad_zero_tensor], dim=0) anchors.append(context_trans_selected_relabel[None]) positives.append(context_trans_task_i_sampled[None]) negatives.append(context_trans_selected[None]) # Dim: (num_tasks * (num_tasks - 1), num_trans_context, context_dim) anchors = torch.cat(anchors, dim=0) positives = torch.cat(positives, dim=0) negatives = torch.cat(negatives, dim=0) # input_contexts: (3 * num_tasks * (num_tasks - 1), num_trans_context, context_dim) input_contexts = torch.cat([anchors, positives, negatives], dim=0) # num_selected_pt: (num_tasks * (num_tasks - 1), ) num_selected_pt = torch.from_numpy(np.array(num_selected_list)) # num_selected_repeat: (3 * num_tasks * (num_tasks - 1), ) num_selected_repeat = num_selected_pt.repeat(3) # z_means_vec, z_vars_vec: (3 * num_tasks * (num_tasks - 1), latent_dim) z_means_vec, z_vars_vec = self.context_encoder.infer_posterior_with_mean_var( input_contexts, num_trans_context, num_selected_repeat) # z_means_vec, z_vars_vec: (3, num_tasks * (num_tasks - 1), latent_dim) z_means_vec = z_means_vec.reshape(3, anchors.shape[0], -1) z_vars_vec = z_vars_vec.reshape(3, anchors.shape[0], -1) # Dim: (num_tasks * (num_tasks - 1), latent_dim) z_means_anchors, z_vars_anchors = z_means_vec[0], z_vars_vec[0] z_means_positives, z_vars_positives = z_means_vec[1], z_vars_vec[1] z_means_negatives, z_vars_negatives = z_means_vec[2], z_vars_vec[2] with_task_dist = compute_kl_div_diagonal(z_means_anchors, z_vars_anchors, z_means_positives, z_vars_positives) across_task_dist = compute_kl_div_diagonal(z_means_anchors, z_vars_anchors, z_means_negatives, z_vars_negatives) # Remove the triplet corresponding to # num selected equal 0 exclude_task_masks = ptu.from_numpy(np.array(exclude_task_masks)) with_task_dist = with_task_dist * exclude_task_masks across_task_dist = across_task_dist * exclude_task_masks unscaled_triplet_loss_vec = F.relu(with_task_dist - across_task_dist + self.triplet_margin) unscaled_triplet_loss_vec = torch.mean(unscaled_triplet_loss_vec) # assert unscaled_triplet_loss_vec is not nan assert (unscaled_triplet_loss_vec != unscaled_triplet_loss_vec).any() is not True gt.stamp('get_triplet_loss', unique=False) unscaled_triplet_loss_vec.backward() check_grad_nan_nets(self.networks, f'triplet: {unscaled_triplet_loss_vec}') gt.stamp('get_triplet_loss_gradient', unique=False) """ Infer the context variables """ # inferred_mdps = self.context_encoder(new_contexts) inferred_mdps = self.context_encoder(fast_contexts) inferred_mdps = torch.repeat_interleave(inferred_mdps, in_mdp_batch_size, dim=0) gt.stamp('infer_mdps', unique=False) """ Obtain the KL loss """ kl_div = self.context_encoder.compute_kl_div() kl_loss_each_task = self.kl_lambda * torch.sum(kl_div, dim=1) kl_loss = torch.sum(kl_loss_each_task) gt.stamp('get_kl_loss', unique=False) """ Obtain the Q-function loss """ self.Qs_optimizer.zero_grad() pred_q = self.Qs(obs, actions, inferred_mdps) pred_q = torch.squeeze(pred_q) qf_loss_each_task = (pred_q - target_q)**2 qf_loss_each_task = qf_loss_each_task.reshape(num_tasks, -1) qf_loss_each_task = torch.mean(qf_loss_each_task, dim=1) qf_loss = torch.mean(qf_loss_each_task) gt.stamp('get_qf_loss', unique=False) (kl_loss + qf_loss).backward() check_grad_nan_nets(self.networks, 'kl q') gt.stamp('get_kl_qf_gradient', unique=False) self.Qs_optimizer.step() self.context_encoder_optimizer.step() gt.stamp('update_Qs_encoder', unique=False) """ Obtain the candidate action and perturbation loss """ self.vae_decoder_optimizer.zero_grad() self.perturbation_generator_optimizer.zero_grad() pred_candidates = self.vae_decoder(obs, z, inferred_mdps.detach()) pred_perturbations = self.perturbation_generator( obs, target_candidates, inferred_mdps.detach()) candidate_loss_each_task = (pred_candidates - target_candidates)**2 # averaging over action dimension candidate_loss_each_task = torch.mean(candidate_loss_each_task, dim=1) candidate_loss_each_task = candidate_loss_each_task.reshape( num_tasks, in_mdp_batch_size) # average over action in each task candidate_loss_each_task = torch.mean(candidate_loss_each_task, dim=1) candidate_loss = torch.mean(candidate_loss_each_task) perturbation_loss_each_task = (pred_perturbations - target_perturbations)**2 # average over action dimension perturbation_loss_each_task = torch.mean(perturbation_loss_each_task, dim=1) perturbation_loss_each_task = perturbation_loss_each_task.reshape( num_tasks, in_mdp_batch_size) # average over action in each task perturbation_loss_each_task = torch.mean(perturbation_loss_each_task, dim=1) perturbation_loss = torch.mean(perturbation_loss_each_task) gt.stamp('get_candidate_and_perturbation_loss', unique=False) (candidate_loss + perturbation_loss).backward() check_grad_nan_nets(self.networks, 'perb') gt.stamp('get_candidate_and_perturbation_gradient', unique=False) self.vae_decoder_optimizer.step() self.perturbation_generator_optimizer.step() for net in self.networks: for name, m in net.named_parameters(): if (m != m).any(): print(net, name) print(num_selected_list) print(min(num_selected_list)) exit() gt.stamp('update_vae_perturbation', unique=False) """ Save some statistics for eval """ if self._need_to_update_eval_statistics: self._need_to_update_eval_statistics = False """ Eval should set this to None. This way, these statistics are only computed for one batch. """ self.eval_statistics['qf_loss'] = np.mean(ptu.get_numpy(qf_loss)) self.eval_statistics['qf_loss_each_task'] = ptu.get_numpy( qf_loss_each_task) self.eval_statistics['kl_loss'] = np.mean(ptu.get_numpy(kl_loss)) self.eval_statistics['triplet_loss'] = np.mean( ptu.get_numpy(unscaled_triplet_loss_vec)) self.eval_statistics['kl_loss_each_task'] = ptu.get_numpy( kl_loss_each_task) self.eval_statistics['candidate_loss'] = np.mean( ptu.get_numpy(candidate_loss)) self.eval_statistics['candidate_loss_each_task'] = ptu.get_numpy( candidate_loss_each_task) self.eval_statistics['perturbation_loss'] = np.mean( ptu.get_numpy(perturbation_loss)) self.eval_statistics[ 'perturbation_loss_each_task'] = ptu.get_numpy( perturbation_loss_each_task) self.eval_statistics[ 'num_context_candidate_each_task'] = num_context_candidate_each_task