def main(): set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False) # Prepare data datasets = data[args.dataset] K = num_class[args.dataset] print(args) target_dataset = datasets[args.tgt] train_target_file_path = target_dataset batch_size = 16 train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) writer = SummaryWriter('%s/%s' % (args.logdir, args.key)) # Init model target_model = torch.load(args.saved_model) # Evaluate model result = evaluate_classification_perclass(target_model, K, train_target_loader) file_path = 'distance_test/classaccu_%s.txt' % args.key with open(file_path, 'w') as result_file: result_file.writelines(result) print('write result into %s.' % file_path)
def main(): set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False) # Prepare data datasets = data[args.dataset] print(args) train_target_file_path = datasets[args.tgt] train_source_file_path = datasets[args.src] batch_size = 16 train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) writer = SummaryWriter('%s/%s' % (args.logdir, args.key)) # Init model target_model = torch.load(args.saved_model) # Evaluate model vis_tsne(target_model, [train_source_loader, train_target_loader], writer) print('Finish visualization.')
def main(): set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False) # Prepare data datasets = data[args.dataset] K = num_class[args.dataset] print(args) train_target_file_path = datasets[args.tgt] train_source_file_path = datasets[args.src] batch_size = 16 train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) writer = SummaryWriter('%s/%s' % (args.logdir, args.key)) # Init model target_model = torch.load(args.saved_model) model_instance = Distance(g_net=target_model.g_net, class_num=K, alpha=args.alpha, beta=args.beta, gamma=args.gamma) # Evaluate model result = evaluate_distance(model_instance, train_source_loader, train_target_loader) file_path = 'distance_test/%s.txt' % args.key with open(file_path, 'w') as result_file: result_file.writelines(result) print('write result into %s.' % file_path)
def main(): set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False) # Prepare data datasets = data[args.dataset] K = num_class[args.dataset] print(args) train_target_file_path = datasets[args.tgt] train_source_file_path = datasets[args.src] batch_size = 16 train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) writer = SummaryWriter('%s/%s' % (args.logdir, args.key)) # Init model model_instance = ADis(class_num=K, alpha=args.alpha, beta=args.beta, gamma=args.gamma) parameter_list = model_instance.get_parameter_list() optimizer_list = [] for parameter in parameter_list: optimizer = optim.SGD(parameter, lr=args.lr, momentum=0.9, weight_decay=0.0005, nesterov=True) optimizer_list.append(optimizer) scheduler = INVScheduler(gamma=0.001, power=0.75, decay_rate=0.0002, init_lr=args.lr) train_da_evaluator(model_instance, train_source_loader, train_target_loader, num_iterations=100000, optimizer_list=optimizer_list, lr_scheduler=scheduler, writer=writer)
def main(): set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False) # Prepare data datasets = data[args.dataset] K = num_class[args.dataset] print(args) train_target_file_path = datasets[args.tgt] train_source_file_path = datasets[args.src] test_file_path = datasets[args.tgttest] model_path = 'results/final_model_%s.pkl' % args.key batch_size = 48 train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=worker_init_fn, prefix=args.prefix) train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=worker_init_fn, prefix=args.prefix) test_target_loader = load_images(test_file_path, batch_size=batch_size, resize_size=256, is_train=False, crop_size=224, worker_init=worker_init_fn, prefix=args.prefix) writer = SummaryWriter('%s/%s' % (args.logdir, args.key)) # Init model if args.resume == 1: model_instance = torch.load(args.saved_model) model_instance.alpha = args.alpha model_instance.beta = args.beta model_instance.gmma = args.gamma else: model_instance = DANN(class_num=K, alpha=args.alpha, beta=args.beta, gamma=args.gamma) start_iter = args.start_iter parameter_list = model_instance.get_parameter_list() optimizer_list = [] for parameter in parameter_list: optimizer = optim.SGD(parameter, lr=args.lr, momentum=0.9, weight_decay=0.0005, nesterov=True) optimizer_list.append(optimizer) scheduler = INVScheduler(gamma=0.001, power=0.75, decay_rate=0.0005, init_lr=args.lr) train_da(model_instance, train_source_loader, train_target_loader, test_target_loader, num_iterations=100000, optimizer_list=optimizer_list, lr_scheduler=scheduler, writer=writer, key=args.key, do_eval=True, model_dir='results', start_iter=start_iter) # Evaluate model print("All training is finished.") eval_result = evaluate_classification(model_instance, test_target_loader) print(eval_result) # Save model torch.save(model_instance, model_path)
def main(): set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False) # Prepare data datasets = data[args.dataset] K = num_class[args.dataset] print(args) train_target_file_path = datasets[args.tgt] train_source_file_path = datasets[args.src] test_file_path = datasets[args.tgttest] model_path = 'results/final_model_%s.pkl' % args.key batch_size = 32 train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) test_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=False, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) test_target_loader = load_images(test_file_path, batch_size=batch_size, resize_size=256, is_train=False, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix) writer = SummaryWriter('%s/%s' % (args.logdir, args.key)) # Init model target_model = torch.load(args.saved_model) model_instance = LambdaTest(g_net=target_model.g_net, class_num=K, alpha=args.alpha, beta=args.beta, gamma=args.gamma) parameter_list = model_instance.get_parameter_list() optimizer_list = [] for parameter in parameter_list: optimizer = optim.SGD(parameter, lr=args.lr, momentum=0.9, weight_decay=0.0005, nesterov=True) optimizer_list.append(optimizer) scheduler = INVScheduler(gamma=0.001, power=0.75, decay_rate=0.0005, init_lr=args.lr) # Train model train_da(model_instance, train_source_loader, train_target_loader, test_target_loader, num_iterations=50000, optimizer_list=optimizer_list, lr_scheduler=scheduler, writer=writer, key=args.key, do_eval=False, model_dir='results') # Evaluate model print("All training is finished.") ori_train_state = model_instance.is_train model_instance.set_train(False) src_eval_result = evaluate_classification_by_net( model_instance.src_predict, test_source_loader) tgt_eval_result = evaluate_classification_by_net( model_instance.tgt_predict, test_target_loader) model_instance.set_train(ori_train_state) print('src:') print(src_eval_result) print('tgt:') print(tgt_eval_result) lambda_value = (1 - src_eval_result['accuracy'] + 1 - tgt_eval_result['accuracy']) / 2 print('lambda value: %s' % lambda_value) # Save model torch.save(model_instance, model_path)