def getNetwork(args): if (args.net_type == 'alexnet'): net = AlexNet(num_classes, inputs) file_name = 'alexnet-' elif (args.net_type == 'resnet'): net = ResNet(args.depth, num_classes, inputs) file_name = 'resnet-' + str(args.depth) else: print( 'Error : Network should be either [LeNet / AlexNet /SqueezeNet/ ResNet / Wide_ResNet' ) sys.exit(0) return net, file_name
def getNetwork(args): if (args.net_type == 'alexnet'): #net = models.alexnet(pretrained=True) #net.classifier[6] = nn.Linear(4096,num_classes) net = AlexNet(num_classes, inputs) file_name = 'alexnet-' elif (args.net_type == 'resnet'): #net = models.resnet18(pretrained=True) #net.fc = nn.Linear(512, num_classes) net = ResNet(args.depth, num_classes, inputs) file_name = 'resnet-18' else: print('Error : Network should be either [AlexNet / ResNet ') sys.exit(0) return net, file_name
def load_model(): global model model = ResNet(34, 2, 3) #model = resnet50(pretrained=False) model_path = "./checkpoint/business_cards/resnet-34.t7" checkpoint = torch.load(model_path, map_location='cpu') #model.load_state_dict(checkpoint) model = checkpoint['net'] if use_cuda: model.cuda() model = torch.nn.DataParallel(model, device_ids=range( torch.cuda.device_count())) cudnn.benchmark = True model.eval()
def main(): os.chdir(os.path.dirname(__file__)) args = get_arguments() constr_weight = get_constraint(args.weight_bits, 'weight') constr_activation = get_constraint(args.activation_bits, 'activation') if args.dataset == 'cifar10': network = resnet20 dataloader = dataloader_cifar10 elif args.dataset == 'cifar100': t_net = ResNet(depth=56, num_classes=100) state = torch.load("/prj/neo_lv/user/ybhalgat/LSQ-KD/cifar100_pretrained/resnet56.pth.tar") t_net.load_state_dict(state) network = resnet20 dataloader = dataloader_cifar100 else: if args.network == 'resnet18': network = resnet18 elif args.network == 'resnet50': network = resnet50 elif args.network == 'efficientnet-b0': t_net = EfficientNet.from_pretrained("efficientnet-b3") network = efficientnet_b0 else: print('Not Support Network Type: %s' % args.network) return dataloader = dataloader_imagenet train_loader = dataloader(args.data_root, split='train', batch_size=args.batch_size) test_loader = dataloader(args.data_root, split='test', batch_size=args.batch_size) net = network(quan_first=args.quan_first, quan_last=args.quan_last, constr_activation=constr_activation, preactivation=args.preactivation, bw_act=args.activation_bits) model_path = os.path.join(args.model_root, args.model_name + '.pth.tar') if not os.path.exists(model_path): model_path = model_path[:-4] name_weights_old = torch.load(model_path) name_weights_new = net.state_dict() name_weights_new.update(name_weights_old) load_checkpoint(net, name_weights_new) # net.load_state_dict(name_weights_new, strict=False) if not args.haq: add_lsqmodule(net, bit_width=args.weight_bits) else: if args.network == 'resnet50': strategy = [6, 6, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 3, 5, 4, 3, 5, 4, 3, 4, 4, 4, 2, 5, 4, 3, 3, 5, 3, 2, 5, 3, 2, 4, 3, 2, 5, 3, 2, 5, 3, 4, 2, 5, 2, 3, 4, 2, 3, 4] elif args.network == 'efficientnet-b0': strategy = [7, 8, 8, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 5, 6, 5, 6, 4, 5, 6, 5, 6, 4, 4, 5, 4, 5, 2, 3, 4, 3, 4, 2, 3, 4, 4, 7, 5, 2, 4, 2, 5, 5, 2, 4, 2, 5, 5, 2, 4, 2, 5, 5, 2, 4, 3, 3, 2] add_lsqmodule(net, strategy=strategy) print(net) net = net.cuda() net = nn.DataParallel(net, device_ids=range(cuda.device_count())) t_net = t_net.cuda() t_net = nn.DataParallel(t_net, device_ids=range(cuda.device_count())) quan_activation = isinstance(constr_activation, np.ndarray) postfix = '_w' if not quan_activation else '_a' new_model_name = args.prefix + args.model_name + '_lsq' + postfix cache_root = os.path.join('.', 'cache') train_loger = LogHelper(new_model_name, cache_root, quan_activation, args.resume) optimizer, lr_scheduler, optimizer_t = get_optimizer(s_net=net, t_net=t_net, optimizer=args.optimizer, lr_base=args.learning_rate, weight_decay=args.weight_decay, lr_scheduler=args.lr_scheduler, total_epoch=args.total_epoch, quan_activation=quan_activation, act_lr_factor=args.act_lr_factor, weight_lr_factor=args.weight_lr_factor) trainer = Trainer(net=net, t_net=t_net, train_loader=train_loader, test_loader=test_loader, optimizer=optimizer, optimizer_t=optimizer_t, lr_scheduler=lr_scheduler, model_name=new_model_name, train_loger=train_loger) trainer(total_epoch=args.total_epoch, save_check_point=True, resume=args.resume)
def main(): ## Epochs, lr, Dataset={"FashionMNIST","CIFAR10"} args = {'epochs': 30, 'lr': 0.05, 'ensemble': 5, 'dataset': "FashionMNIST"} loss_fn = F.nll_loss #Selecting Main Dataset #FashionMNIST-Mnist #CIFAR10-SVHN ds = all_datasets[args['dataset']]() input_size, num_classes, train_dataset, test_dataset = ds kwargs = {"num_workers": 4, "pin_memory": True} train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=5000, shuffle=False, **kwargs) #Selecting model CNN for FashionMNIST and Resnet for CIFAR10 if args['dataset'] == "FashionMNIST": milestones = [10, 20] ensemble = [ CNN(input_size, num_classes).cuda() for _ in range(args['ensemble']) ] else: milestones = [25, 50] ensemble = [ ResNet(input_size, num_classes).cuda() for _ in range(args['ensemble']) ] ensemble = torch.nn.ModuleList(ensemble) #ensemble.load_state_dict(torch.load("FM_5_ensemble_30.pt")) optimizers = [] schedulers = [] for model in ensemble: # Need different optimisers to apply weight decay and momentum properly # when only optimising one element of the ensemble optimizers.append( torch.optim.SGD(model.parameters(), lr=args['lr'], momentum=0.9, weight_decay=5e-4)) schedulers.append( torch.optim.lr_scheduler.MultiStepLR(optimizers[-1], milestones=milestones, gamma=0.1)) for epoch in range(1, args['epochs'] + 1): #####Train##### for i, model in enumerate(ensemble): train(model, train_loader, optimizers[i], epoch, loss_fn) schedulers[i].step() #####Test###### #Test on testset of main dataset test(ensemble, test_loader, loss_fn) #####AUROC###### #AUROC on Main + ood if (args['dataset'] == "FashionMNIST"): accuracy, auroc = get_fm_mnist_ood_ensemble(ensemble) print({'mnist_ood_auroc': auroc}) else: accuracy, auroc = get_cifar10_svhn_ood_ensemble(ensemble) print({'cifar10_ood_auroc': auroc}) #Save path = f"model{args['dataset']}_{len(ensemble)}" torch.save(ensemble.state_dict(), path + "_ensemble.pt")
class_mode="categorical", target_size=(64, 64), color_mode="rgb", shuffle=False, batch_size=BS) # initialise the testing generator testGen = valAug.flow_from_directory(config.TEST_PATH, class_mode="categorical", target_size=(64, 64), color_mode="rgb", shuffle=False, batch_size=BS) # initialise our ResNet model and compile it model = ResNet.build(64, 64, 3, 2, (3, 4, 6), (64, 128, 256, 512), reg=0.0005) opt = SGD(lr=INIT_LR, momentum=0.9) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) # define our set of callbacks and fit the model callbacks = [LearningRateScheduler(poly_decay)] H = model.fit_generator(trainGen, steps_per_epoch=totalTrain // BS, validation_data=valGen, validation_steps=totalVal // BS, epochs=NUM_EPOCHS, callbacks=callbacks) # reset the testing generator and use the trained model to # make predictions on the data
def loadModel(config): net = ResNet(config) net.load_state_dict(torch.load('results/checkpoint.pt')) return net
from utils.resnet import ResNet from utils.dataTool import train_val_test_loader from utils.trainer import train_test_model from utils.baseline import testLastHourRegression, testArima from config import Config import torch # 全局设置 torch.set_default_tensor_type(torch.DoubleTensor) config = Config() # 读入训练集,验证集 train_loader, test_loader = train_val_test_loader(config) # 定义网络,训练并测试 net = ResNet(config).to(config.device) train_test_model(net, train_loader, test_loader, config) # 测试baseline testLastHourRegression(test_loader, config.device, config.metric, hour_type='last_day') # 前一天 testLastHourRegression(test_loader, config.device, config.metric, hour_type='last_week') # 前一周 testArima(config) # arima