def train_svm_repeatedly(kernel, train_X, train_y, valid_X, valid_y, test_X, test_y, masks_list=None): metrics_bundles = [] for mask in masks_list: metrics_bundles.append( train_svm(kernel, train_X, train_y, valid_X, valid_y, test_X, test_y, mask=mask)) train_metrics, valid_metrics, test_metrics = zip(*metrics_bundles) valid_test_accs = zip(list(valid_metrics), list(test_metrics)) valid_test_acc_curves(valid_test_accs) get_avg_metrics(train_metrics) get_avg_metrics(valid_metrics) get_avg_metrics(test_metrics)
def train_weighted_voting_repeatedly(train_X, train_y, valid_X, valid_y, test_X, test_y, threshold=0.5, masks_list=None): metrics_bundles = [] for mask in masks_list: metrics_bundles.append( train_weighted_voting('f1score', train_X, train_y, valid_X, valid_y, test_X, test_y, mask=mask)) train_metrics, valid_metrics, test_metrics = zip(*metrics_bundles) valid_test_accs = zip(list(valid_metrics), list(test_metrics)) valid_test_acc_curves(valid_test_accs) get_avg_metrics(train_metrics) get_avg_metrics(valid_metrics) get_avg_metrics(test_metrics)
def train_neural_net_repeatedly(train_X, train_y, valid_X, valid_y, test_X, test_y, iterations=100): metrics_bundles = [] for i in range(iterations): metrics_bundles.append( train_neural_net(train_X, train_y, valid_X, valid_y, test_X, test_y)) train_metrics, valid_metrics, test_metrics = zip(*metrics_bundles) valid_test_accs = zip(list(valid_metrics), list(test_metrics)) valid_test_acc_curves(valid_test_accs, "Artificial Neural Network") get_avg_metrics(train_metrics) get_avg_metrics(valid_metrics) get_avg_metrics(test_metrics)