def get_predicted_features(self, pos_past, traj, height, orient_pred,
                               quat_pred):
        num_samples = quat_pred.shape[0]
        num_frames = quat_pred.shape[1]
        orient_pred = orient_pred.view(num_samples, num_frames, 1, -1)
        quat_pred = quat_pred.view(num_samples, num_frames, self.V - 1, -1)
        quats_world = torch.cat((orient_pred, quat_pred), dim=-2)
        root_pred = torch.zeros(
            (num_samples, num_frames, self.C)).cuda().float()
        root_pred[:, :, [0, 2]] = traj
        root_pred[:, :, 1] = height

        pos_pred = MocapDataset.forward_kinematics(
            quats_world, root_pred, self.joint_parents,
            torch.from_numpy(self.joint_offsets).float().cuda())
        affs_pred = torch.tensor(
            MocapDataset.get_affective_features(
                pos_pred.detach().cpu().numpy())).cuda().float()
        spline = []
        for s in range(num_samples):
            data_pred_curr = dict()
            data_pred_curr['positions'] = torch.cat(
                (pos_past[s], pos_pred[s]), dim=0).detach().cpu().numpy()
            data_pred_curr[
                'trans_and_controls'] = MocapDataset.compute_translations_and_controls(
                    data_pred_curr)
            spline.append(
                Spline.extract_spline_features(
                    MocapDataset.compute_splines(data_pred_curr))[0][-1:])
        spline_pred = torch.from_numpy(np.stack(spline, axis=0)).cuda().float()
        return pos_pred, affs_pred, spline_pred
    def return_batch(self, batch_size, dataset):
        if len(batch_size) > 1:
            rand_keys = np.copy(batch_size)
            batch_size = len(batch_size)
        else:
            batch_size = batch_size[0]
            probs = []
            for k in dataset.keys():
                if 'spline' not in dataset[k]:
                    raise KeyError(
                        'No splines found. Perhaps you forgot to compute them?'
                    )
                probs.append(dataset[k]['spline'].size())
            probs = np.array(probs) / np.sum(probs)
            rand_keys = np.random.choice(len(dataset),
                                         size=batch_size,
                                         replace=False,
                                         p=probs)

        batch_pos = np.zeros((batch_size, self.T, self.V, self.C),
                             dtype='float32')
        batch_traj = np.zeros((batch_size, self.T, self.C), dtype='float32')
        batch_quat = np.zeros((batch_size, self.T, (self.V - 1) * self.D),
                              dtype='float32')
        batch_orient = np.zeros((batch_size, self.T, self.O), dtype='float32')
        batch_affs = np.zeros((batch_size, self.T, self.A), dtype='float32')
        batch_spline = np.zeros((batch_size, self.T, self.S), dtype='float32')
        batch_phase_and_root_speed = np.zeros((batch_size, self.T, self.PRS),
                                              dtype='float32')
        batch_labels = np.zeros((batch_size, 1, self.num_labels[0]),
                                dtype='float32')

        for i, k in enumerate(rand_keys):
            pos = dataset[str(k)]['positions_world']
            traj = dataset[str(k)]['trajectory']
            quat = dataset[str(k)]['rotations']
            orient = dataset[str(k)]['orientations']
            affs = dataset[str(k)]['affective_features']
            spline, phase = Spline.extract_spline_features(
                dataset[str(k)]['spline'])
            root_speed = dataset[str(k)]['trans_and_controls'][:, -1].reshape(
                -1, 1)
            labels = dataset[str(k)]['labels'][:self.num_labels[0]]

            batch_pos[i] = pos
            batch_traj[i] = traj
            batch_quat[i] = quat.reshape(self.T, -1)
            batch_orient[i] = orient.reshape(self.T, -1)
            batch_affs[i] = affs
            batch_spline[i] = spline
            batch_phase_and_root_speed[i] = np.concatenate((phase, root_speed),
                                                           axis=-1)
            batch_labels[i] = np.expand_dims(labels, axis=0)

        return batch_pos, batch_traj, batch_quat, batch_orient, batch_affs, batch_spline,\
               batch_phase_and_root_speed, batch_labels
示例#3
0
    def return_batch(self, batch_size, dataset, randomized=True):
        if len(batch_size) > 1:
            rand_keys = np.copy(batch_size)
            batch_size = len(batch_size)
        else:
            batch_size = batch_size[0]
            probs = []
            for k in dataset.keys():
                if 'spline' not in dataset[k]:
                    raise KeyError('No splines found. Perhaps you forgot to compute them?')
                probs.append(dataset[k]['spline'].size())
            probs = np.array(probs) / np.sum(probs)
            if randomized:
                rand_keys = np.random.choice(len(dataset), size=batch_size, replace=False, p=probs)
            else:
                rand_keys = np.arange(batch_size)

        batch_pos = np.zeros((batch_size, self.T, self.V, self.C), dtype='float32')
        batch_quat = np.zeros((batch_size, self.T, (self.V - 1) * self.D), dtype='float32')
        batch_orient = np.zeros((batch_size, self.T, self.O), dtype='float32')
        batch_z_mean = np.zeros((batch_size, self.Z), dtype='float32')
        batch_z_dev = np.zeros((batch_size, self.T, self.Z), dtype='float32')
        batch_root_speed = np.zeros((batch_size, self.T, self.RS), dtype='float32')
        batch_affs = np.zeros((batch_size, self.T, self.A), dtype='float32')
        batch_spline = np.zeros((batch_size, self.T, self.S), dtype='float32')
        batch_labels = np.zeros((batch_size, 1, self.num_labels[0]), dtype='float32')
        pseudo_passes = (len(dataset) + batch_size - 1) // batch_size

        for i, k in enumerate(rand_keys):
            pos = dataset[str(k)]['positions'][:self.T]
            quat = dataset[str(k)]['rotations'][:self.T, 1:]
            orient = dataset[str(k)]['rotations'][:self.T, 0]
            affs = dataset[str(k)]['affective_features'][:self.T]
            spline, phase = Spline.extract_spline_features(dataset[str(k)]['spline'])
            spline = spline[:self.T]
            phase = phase[:self.T]
            z = dataset[str(k)]['trans_and_controls'][:, 1][:self.T]
            z_mean = np.mean(z[:self.prefix_length])
            z_dev = z - z_mean
            root_speed = dataset[str(k)]['trans_and_controls'][:, -1][:self.T]
            labels = dataset[str(k)]['labels'][:self.num_labels[0]]

            batch_pos[i] = pos
            batch_quat[i] = quat.reshape(self.T, -1)
            batch_orient[i] = orient.reshape(self.T, -1)
            batch_z_mean[i] = z_mean.reshape(-1, 1)
            batch_z_dev[i] = z_dev.reshape(self.T, -1)
            batch_root_speed[i] = root_speed.reshape(self.T, 1)
            batch_affs[i] = affs
            batch_spline[i] = spline
            batch_labels[i] = np.expand_dims(labels, axis=0)

        return batch_pos, batch_quat, batch_orient, batch_z_mean, batch_z_dev,\
            batch_root_speed, batch_affs, batch_spline, batch_labels
示例#4
0
    def get_predicted_features(self, pos_past, orient_past, traj, height,
                               quat_pred, orient_pred):
        num_samples = quat_pred.shape[0]
        num_frames = quat_pred.shape[1]
        offsets = torch.from_numpy(self.joint_offsets).cuda().float(). \
            unsqueeze(0).unsqueeze(0).repeat(num_samples, num_frames, 1, 1)
        quat_pred = quat_pred.view(num_samples, num_frames, self.V - 1, -1)
        zeros = torch.zeros_like(orient_pred)
        quats_world = quat_pred.clone()
        quats_world = torch.cat((expmap_to_quaternion(
            torch.cat((zeros, orient_pred, zeros),
                      dim=-1)).unsqueeze(-2), quats_world),
                                dim=-2)
        pos_pred = torch.zeros(
            (num_samples, num_frames, self.V, self.C)).cuda().float()
        pos_pred[:, :, 0, [0, 2]] = traj
        pos_pred[:, :, 0, 1] = height

        # for joint in range(self.V):
        #     if self.joint_parents[joint] == -1:
        #         quats_world[:, :, joint] = expmap_to_quaternion(torch.cat((zeros, orient_pred, zeros), dim=-1))
        #     else:
        #         pos_pred[:, :, joint] = qrot(quats_world[:, :, self.joint_parents[joint]], offsets[:, :, joint]) \
        #                                 + pos_pred[:, :, self.joint_parents[joint]]
        #         quats_world[:, :, joint] = qmul(quats_world[:, :, self.joint_parents[joint]],
        #                                         quat_pred[:, :, joint - 1])
        for joint in range(1, self.V):
            pos_pred[:, :, joint] = qrot(quats_world[:, :, joint], offsets[:, :, joint]) \
                                    + pos_pred[:, :, self.joint_parents[joint]]
        affs_pred = torch.tensor(
            MocapDataset.get_affective_features(
                pos_pred.detach().cpu().numpy())).cuda().float()
        spline = []
        for s in range(num_samples):
            data_pred_curr = dict()
            data_pred_curr['positions_world'] = torch.cat(
                (pos_past[s], pos_pred[s]), dim=0).detach().cpu().numpy()
            data_pred_curr['trajectory'] = data_pred_curr['positions_world'][:,
                                                                             0]
            data_pred_curr['orientations'] = torch.cat(
                (orient_past[s], orient_pred[s]),
                dim=0).squeeze().detach().cpu().numpy()
            data_pred_curr[
                'trans_and_controls'] = MocapDataset.compute_translations_and_controls(
                    data_pred_curr)
            spline.append(
                Spline.extract_spline_features(
                    MocapDataset.compute_splines(data_pred_curr))[0][-1:])
        spline_pred = torch.from_numpy(np.stack(spline, axis=0)).cuda().float()
        return pos_pred, affs_pred, spline_pred