示例#1
0
max_iter = len(data_loader) - 1
timer.reset()
main_gpu = dist.get_rank() == 0
num_gpu = dist.get_world_size()

for i, (img_list_batch, box_list_batch) in enumerate(data_loader, start_iter):
    if main_gpu and i == start_iter + 1:
        timer.start()

    optim.update_lr(step=i)

    img_tensor_batch = torch.stack([aa.img for aa in img_list_batch], dim=0).cuda()
    for box_list in box_list_batch:
        box_list.to_cuda()

    with timer.counter('for+loss'):
        category_loss, box_loss, iou_loss = model(img_tensor_batch, box_list_batch)
        all_loss = torch.stack([category_loss, box_loss, iou_loss], dim=0)
        dist.reduce(all_loss, dst=0)

        if main_gpu:  # get the mean loss across all GPUS
            l_c = all_loss[0].item() / num_gpu  # seems when printing, need to call .item(), not sure
            l_b = all_loss[1].item() / num_gpu
            l_iou = all_loss[2].item() / num_gpu

    with timer.counter('backward'):
        losses = category_loss + box_loss + iou_loss
        optim.optimizer.zero_grad()
        losses.backward()

    with timer.counter('update'):
if cfg.image is not None:
    dataset = COCODetection(cfg, mode='detect')
    data_loader = data.DataLoader(dataset, 1, num_workers=4, shuffle=False,
                                  pin_memory=True, collate_fn=detect_onnx_collate)
    ds = len(data_loader)
    assert ds > 0, 'No .jpg images found.'
    progress_bar = ProgressBar(40, ds)
    timer.reset()

    for i, (img, img_origin, img_name) in enumerate(data_loader):
        if i == 1:
            timer.start()

        img_h, img_w = img_origin.shape[0:2]

        with timer.counter('forward'):
            class_p, box_p, coef_p, proto_p, anchors = sess.run(None, {input_name: img})

        with timer.counter('nms'):
            ids_p, class_p, box_p, coef_p, proto_p = nms_numpy(class_p, box_p, coef_p, proto_p, anchors, cfg)

        with timer.counter('after_nms'):
            ids_p, class_p, boxes_p, masks_p = after_nms_numpy(ids_p, class_p, box_p, coef_p,
                                                               proto_p, img_h, img_w, cfg)

        with timer.counter('save_img'):
            img_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, img_origin, cfg, img_name=img_name)
            cv2.imwrite(f'results/images/{img_name}', img_numpy)

        aa = time.perf_counter()
        if i > 0:
示例#3
0
def evaluate(net, cfg, step=None):
    dataset = COCODetection(cfg, mode='val')
    data_loader = data.DataLoader(dataset,
                                  1,
                                  num_workers=4,
                                  shuffle=False,
                                  pin_memory=True,
                                  collate_fn=val_collate)
    ds = len(data_loader)
    progress_bar = ProgressBar(40, ds)
    timer.reset()

    ap_data = {
        'box': [[APDataObject() for _ in cfg.class_names] for _ in iou_thres],
        'mask': [[APDataObject() for _ in cfg.class_names] for _ in iou_thres]
    }

    with torch.no_grad():
        for i, (img, gt, gt_masks, img_h, img_w) in enumerate(data_loader):
            if i == 1:
                timer.start()

            if cfg.cuda:
                img, gt, gt_masks = img.cuda(), gt.cuda(), gt_masks.cuda()

            with timer.counter('forward'):
                class_p, box_p, coef_p, proto_p, anchors = net(img)

            with timer.counter('nms'):
                ids_p, class_p, box_p, coef_p, proto_p = nms(
                    class_p, box_p, coef_p, proto_p, anchors, cfg)

            with timer.counter('after_nms'):
                ids_p, class_p, boxes_p, masks_p = after_nms(
                    ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w)
                if ids_p is None:
                    continue

            with timer.counter('metric'):
                ids_p = list(ids_p.cpu().numpy().astype(int))
                class_p = list(class_p.cpu().numpy().astype(float))

                if cfg.coco_api:
                    boxes_p = boxes_p.cpu().numpy()
                    masks_p = masks_p.cpu().numpy()

                    for j in range(masks_p.shape[0]):
                        if (boxes_p[j, 3] - boxes_p[j, 1]) * (
                                boxes_p[j, 2] - boxes_p[j, 0]) > 0:
                            make_json.add_bbox(dataset.ids[i], ids_p[j],
                                               boxes_p[j, :], class_p[j])
                            make_json.add_mask(dataset.ids[i], ids_p[j],
                                               masks_p[j, :, :], class_p[j])
                else:
                    prep_metrics(ap_data, ids_p, class_p, boxes_p, masks_p, gt,
                                 gt_masks, img_h, img_w, iou_thres)

            aa = time.perf_counter()
            if i > 0:
                batch_time = aa - temp
                timer.add_batch_time(batch_time)
            temp = aa

            if i > 0:
                t_t, t_d, t_f, t_nms, t_an, t_me = timer.get_times(
                    ['batch', 'data', 'forward', 'nms', 'after_nms', 'metric'])
                fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t
                bar_str = progress_bar.get_bar(i + 1)
                print(
                    f'\rTesting: {bar_str} {i + 1}/{ds}, fps: {fps:.2f} | total fps: {t_fps:.2f} | '
                    f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | '
                    f't_after_nms: {t_an:.3f} | t_metric: {t_me:.3f}',
                    end='')

        if cfg.coco_api:
            make_json.dump()
            print(
                f'\nJson files dumped, saved in: \'results/\', start evaluating.'
            )

            gt_annotations = COCO(cfg.val_ann)
            bbox_dets = gt_annotations.loadRes(f'results/bbox_detections.json')
            mask_dets = gt_annotations.loadRes(f'results/mask_detections.json')

            print('\nEvaluating BBoxes:')
            bbox_eval = COCOeval(gt_annotations, bbox_dets, 'bbox')
            bbox_eval.evaluate()
            bbox_eval.accumulate()
            bbox_eval.summarize()

            print('\nEvaluating Masks:')
            bbox_eval = COCOeval(gt_annotations, mask_dets, 'segm')
            bbox_eval.evaluate()
            bbox_eval.accumulate()
            bbox_eval.summarize()
        else:
            table, box_row, mask_row = calc_map(ap_data,
                                                iou_thres,
                                                len(cfg.class_names),
                                                step=step)
            print(table)
            return table, box_row, mask_row
示例#4
0
def inference(model, cfg, during_training=False):
    model.eval()
    predictions, coco_results = {}, []
    val_loader = make_data_loader(cfg, during_training=during_training)
    dataset = val_loader.dataset
    dl = len(val_loader)
    bar = ProgressBar(length=40, max_val=dl)
    timer.reset()

    with torch.no_grad():
        for i, (img_list_batch, _) in enumerate(val_loader):
            if i == 1:
                timer.start()

            with timer.counter('forward'):
                img_tensor_batch = torch.stack(
                    [aa.img for aa in img_list_batch], dim=0).cuda()
                c_pred, box_pred, iou_pred, anchors = model(img_tensor_batch)

            with timer.counter('post_process'):
                resized_size = [aa.resized_size for aa in img_list_batch]
                pred_batch = post_process(cfg, c_pred, box_pred, iou_pred,
                                          anchors, resized_size)

            with timer.counter('accumulate'):
                for pred in pred_batch:
                    pred.to_cpu()

                for img_list, pred in zip(img_list_batch, pred_batch):
                    if pred.box.shape[0] == 0:
                        continue

                    original_id = dataset.id_img_map[img_list.id]
                    pred.resize(img_list.ori_size)
                    pred.convert_mode("x1y1wh")

                    boxes = pred.box.tolist()
                    score = pred.score.tolist()
                    label = pred.label.tolist()

                    mapped_labels = [dataset.to_category_id[i] for i in label]
                    coco_results.extend([{
                        "image_id": original_id,
                        "category_id": mapped_labels[k],
                        "bbox": box,
                        "score": score[k]
                    } for k, box in enumerate(boxes)])

            aa = time.perf_counter()
            if i > 0:
                batch_time = aa - temp
                timer.add_batch_time(batch_time)

                time_name = [
                    'batch', 'data', 'forward', 'post_process', 'accumulate'
                ]
                t_t, t_d, t_f, t_pp, t_acc = timer.get_times(time_name)
                fps, t_fps = 1 / (t_d + t_f + t_pp), 1 / t_t
                bar_str = bar.get_bar(i + 1)
                print(
                    f'\rTesting: {bar_str} {i + 1}/{dl}, fps: {fps:.2f} | total fps: {t_fps:.2f} | t_t: {t_t:.3f} | '
                    f't_d: {t_d:.3f} | t_f: {t_f:.3f} | t_pp: {t_pp:.3f} | t_acc: {t_acc:.3f}',
                    end='')

            temp = aa

    print('\n\nTest ended, doing evaluation...')

    json_name = cfg.weight.split('/')[-1].split('.')[0]
    file_path = f'results/{json_name}.json'
    with open(file_path, "w") as f:
        json.dump(coco_results, f)

    coco_dt = dataset.coco.loadRes(file_path)

    if cfg.val_api == 'Improved COCO':
        from my_cocoeval.cocoeval import SelfEval
        bbox_eval = SelfEval(dataset.coco, coco_dt, all_points=True)
    else:
        from pycocotools.cocoeval import COCOeval
        bbox_eval = COCOeval(dataset.coco, coco_dt, iouType='bbox')

    bbox_eval.evaluate()
    bbox_eval.accumulate()
    bbox_eval.summarize()

    if not during_training:
        if cfg.val_api == 'Improved COCO':
            bbox_eval.draw_curve()
        else:
            compute_thre_per_class(bbox_eval)
示例#5
0
def main():
    parser = argparse.ArgumentParser(description='YOLACT Detection.')
    parser.add_argument('--weight', default='weights/best_30.5_res101_coco_392000.pth', type=str)
    parser.add_argument('--image', default=None, type=str, help='The folder of images for detecting.')
    parser.add_argument('--video', default=None, type=str, help='The path of the video to evaluate.')
    parser.add_argument('--img_size', type=int, default=544, help='The image size for validation.')
    parser.add_argument('--traditional_nms', default=False, action='store_true', help='Whether to use traditional nms.')
    parser.add_argument('--hide_mask', default=False, action='store_true', help='Hide masks in results.')
    parser.add_argument('--hide_bbox', default=False, action='store_true', help='Hide boxes in results.')
    parser.add_argument('--hide_score', default=False, action='store_true', help='Hide scores in results.')
    parser.add_argument('--cutout', default=False, action='store_true', help='Cut out each object and save.')
    parser.add_argument('--save_lincomb', default=False, action='store_true', help='Show the generating process of masks.')
    parser.add_argument('--no_crop', default=False, action='store_true',
                        help='Do not crop the output masks with the predicted bounding box.')
    parser.add_argument('--real_time', default=False, action='store_true', help='Show the detection results real-timely.')
    parser.add_argument('--visual_thre', default=0.3, type=float,
                        help='Detections with a score under this threshold will be removed.')

    args = parser.parse_args()
    prefix = re.findall(r'best_\d+\.\d+_', args.weight)[0]
    suffix = re.findall(r'_\d+\.pth', args.weight)[0]
    args.cfg = args.weight.split(prefix)[-1].split(suffix)[0]
    cfg = get_config(args, mode='detect')

    net = Yolact(cfg)
    net.load_weights(cfg.weight, cfg.cuda)
    net.eval()

    if cfg.cuda:
        cudnn.benchmark = True
        cudnn.fastest = True
        net = net.cuda()

    # detect images
    if cfg.image is not None:
        dataset = COCODetection(cfg, mode='detect')
        data_loader = data.DataLoader(dataset, 1, num_workers=2, shuffle=False, pin_memory=True, collate_fn=detect_collate)
        ds = len(data_loader)
        assert ds > 0, 'No .jpg images found.'
        progress_bar = ProgressBar(40, ds)
        timer.reset()

        for i, (img, img_origin, img_name) in enumerate(data_loader):
            if i == 1:
                timer.start()

            if cfg.cuda:
                img = img.cuda()

            img_h, img_w = img_origin.shape[0:2]

            with torch.no_grad(), timer.counter('forward'):
                class_p, box_p, coef_p, proto_p = net(img)

            with timer.counter('nms'):
                ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg)

            with timer.counter('after_nms'):
                ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p,
                                                            img_h, img_w, cfg, img_name=img_name)

            with timer.counter('save_img'):
                img_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, img_origin, cfg, img_name=img_name)
                cv2.imwrite(f'results/images/{img_name}', img_numpy)

            aa = time.perf_counter()
            if i > 0:
                batch_time = aa - temp
                timer.add_batch_time(batch_time)
            temp = aa

            if i > 0:
                t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward',
                                                                    'nms', 'after_nms', 'save_img'])
                fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t
                bar_str = progress_bar.get_bar(i + 1)
                print(f'\rTesting: {bar_str} {i + 1}/{ds}, fps: {fps:.2f} | total fps: {t_fps:.2f} | '
                    f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | '
                    f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='')

        print('\nFinished, saved in: results/images.')

    # detect videos
    elif cfg.video is not None:
        vid = cv2.VideoCapture(cfg.video)

        target_fps = round(vid.get(cv2.CAP_PROP_FPS))
        frame_width = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
        num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT))

        name = cfg.video.split('/')[-1]
        video_writer = cv2.VideoWriter(f'results/videos/{name}', cv2.VideoWriter_fourcc(*"mp4v"), target_fps,
                                    (frame_width, frame_height))

        progress_bar = ProgressBar(40, num_frames)
        timer.reset()
        t_fps = 0

        for i in range(num_frames):
            if i == 1:
                timer.start()

            frame_origin = vid.read()[1]
            img_h, img_w = frame_origin.shape[0:2]
            frame_trans = val_aug(frame_origin, cfg.img_size)

            frame_tensor = torch.tensor(frame_trans).float()
            if cfg.cuda:
                frame_tensor = frame_tensor.cuda()

            with torch.no_grad(), timer.counter('forward'):
                class_p, box_p, coef_p, proto_p = net(frame_tensor.unsqueeze(0))

            with timer.counter('nms'):
                ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg)

            with timer.counter('after_nms'):
                ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w, cfg)

            with timer.counter('save_img'):
                frame_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, frame_origin, cfg, fps=t_fps)

            if cfg.real_time:
                cv2.imshow('Detection', frame_numpy)
                cv2.waitKey(1)
            else:
                video_writer.write(frame_numpy)

            aa = time.perf_counter()
            if i > 0:
                batch_time = aa - temp
                timer.add_batch_time(batch_time)
            temp = aa

            if i > 0:
                t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward',
                                                                    'nms', 'after_nms', 'save_img'])
                fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t
                bar_str = progress_bar.get_bar(i + 1)
                print(f'\rDetecting: {bar_str} {i + 1}/{num_frames}, fps: {fps:.2f} | total fps: {t_fps:.2f} | '
                    f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | '
                    f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='')

        if not cfg.real_time:
            print(f'\n\nFinished, saved in: results/videos/{name}')

        vid.release()
        video_writer.release()
示例#6
0
test_dataset = Seg_dataset(cfg)

model = DLASeg(cfg).cuda()
model.load_state_dict(torch.load(cfg.trained_model), strict=True)
model.eval()

timer.reset()
with torch.no_grad():
    for i, (data_tuple, img_name) in enumerate(test_dataset):
        if i == 1:
            timer.start()  # timer does not timing for the first image.

        img_name = img_name.replace('tif', 'png')
        image = data_tuple[0].unsqueeze(0).cuda().detach()

        with timer.counter('forward'):
            output = model(image)

        with timer.counter('save result'):
            pred = torch.max(output, 1)[1].squeeze(0).cpu().numpy()

            if cfg.colorful:
                pred = PALLETE[pred].astype('uint8')
                cv2.imwrite(f'results/{img_name}', pred)
            if cfg.overlay:
                pred = PALLETE[pred].astype('uint8')
                original_img = data_tuple[1].astype('uint8')
                fused = cv2.addWeighted(pred, 0.2, original_img, 0.8, gamma=0)
                cv2.imwrite(f'results/{img_name}', fused)
            else:
                pred *= int(255 / cfg.class_num)
示例#7
0
                                  num_workers=4,
                                  shuffle=False,
                                  pin_memory=False,
                                  collate_fn=detect_onnx_collate)

    ds = len(data_loader)
    assert ds > 0, 'No .jpg images found.'
    progress_bar = ProgressBar(40, ds)
    timer.reset()

    for i, (img, img_origin, img_name) in enumerate(data_loader):
        if i == 1:
            timer.start()

        with timer.counter(
                'forward',
                trt_mode=True), engine.create_execution_context() as context:
            assert img.shape == (1, 3, cfg.img_size,
                                 cfg.img_size), 'Img shape error.'
            inputs[0].host = img  # input dtype should be float32
            # Transfer input data to the GPU.
            [
                cuda.memcpy_htod_async(inp.device, inp.host, stream)
                for inp in inputs
            ]
            # Run inference.
            context.execute_async_v2(bindings=bindings,
                                     stream_handle=stream.handle)
            # Transfer predictions back from the GPU.
            [
                cuda.memcpy_dtoh_async(out.host, out.device, stream)