def get_data_and_config(global_args): data_loader = DataLoader(global_args) train_set, test_set = data_loader.split() model_args = get_model_args(data_loader.item_nums, global_args) logging.info(dict_to_str(model_args, "Configurations")) return model_args, train_set, test_set
def get_data_and_config(global_args): data_loader = DataLoader(global_args) train_set, test_set = data_loader.split() model_args = get_model_args(data_loader.item_nums, global_args) logging.info(dict_to_str(model_args, "Model Configurations")) if model_args["gen_sub_sess"]: train_set = data_loader.generate_sub_sessions(train_set, model_args["pad_token"]) return model_args, train_set, test_set
def log_configs(args): logging.info(dict_to_str(args, "Global Configurations"))
# 0. setup folder and logger path = setup_folder(configs) configs.update({"store_path": path}) logger.setup_logger(configs) # 1. setup env, seed and gpu environment_preset(configs) gpu_config = get_gpu_config(configs["occupy"]) sess = tf.Session(config=gpu_config) # 2. prepare dataset data_loader = DataLoaderPretrain(configs, configs["min_freq"]) train_set, test_set = data_loader.split() data_loader.save_dict() logging.info("item dict saved to itemdict.pkl") # 3. update model configs configs = update_model_args(data_loader.item_nums) logging.info(dict_to_str(configs, "Configurations")) # 4. create model model = NextItNet(configs) with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE): optimizer = tf.train.AdamOptimizer(configs["lr"]).minimize( model.loss_train) # 5. launch the rocket start() sess.close()