示例#1
0
def main():
    args = parse_args()
    torch.cuda.set_device(args.gpu)

    if args.dataset == 'domainnet':
        num_domain = 6
        num_classes = 345
    elif args.dataset == 'officehome':
        num_domain = 4
        num_classes = 65

    print(args.dataset, num_classes, num_domain)
    _, trg_sup_val = get_dataset(dataset=args.dataset, dataset_root=args.data_root, domain=args.trg_domain,
                                             ssl=False)

    trg_num = domain_dict[args.dataset][args.trg_domain]

    model = get_model(args.model_name, in_features=num_classes, num_classes=num_classes,
                       num_domains=num_domain, pretrained=True)
    model.load_state_dict(torch.load(args.model_path)['model'])

    model = model.cuda(args.gpu)
    _, acc = test(args, model, trg_sup_val, domain_dict[args.dataset][args.trg_domain])
    print('acc: %0.3f'%(acc))
示例#2
0
def test_model(test_path,
               model_name,
               trained_model,
               save_path,
               traineddataset,
               testdataset,
               opt,
               lr,
               pretrain,
               num_classes,
               test_split=False):
    state = defaultdict()
    test_loader = defaultdict()
    test_transform = trn.Compose([
        trn.ToTensor(),
        trn.Normalize([0.566, 0.496, 0.469], [0.266, 0.256, 0.258])
    ])
    img_pixels = (224, 224)

    # Load test data
    test_set_X, test_set_y, _ = data_utils.process_data(test_path)
    test_loader = data_utils.make_dataloader_iter(
        test_set_X,
        test_set_y,
        img_size=img_pixels,
        batch_size=10,
        transform_test=test_transform)

    # Load model
    if model_name == 'alexnet':
        net = Generalmodels.alexnet(num_classes,
                                    pretrain,
                                    trained_model,
                                    if_test=True)
    elif model_name == 'VGG':
        net = Generalmodels.VGG16(num_classes,
                                  pretrain,
                                  trained_model,
                                  if_test=True)
    elif model_name == 'densenet121':
        net = Generalmodels.densenet121(num_classes,
                                        pretrain,
                                        trained_model,
                                        if_test=True)
    elif model_name == 'resnet50':
        net = Generalmodels.resnet50(num_classes,
                                     pretrain,
                                     trained_model,
                                     if_test=True)

    device = torch.device("cuda")
    net.load_state_dict(torch.load(trained_model))
    net = net.to(device)

    # If test general performance
    if not test_split:
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        test(net, test_loader, state)
        with open(
                os.path.join(
                    save_path, '{}_{}_{}_{}_{}_results.csv'.format(
                        traineddataset, model_name, opt, lr, testdataset)),
                'a') as f:
            f.write('%s,%0.6f\n' % (
                '(test)',
                state['test_accuracy'],
            ))

    # Test performance per age
    if test_split:
        new_path = os.path.join(save_path, 'split')
        if not os.path.exists(new_path):
            os.makedirs(new_path)
        if testdataset == 'FineTuneData':
            testdataset = 'testing'

        gt,tp,mae,prediction,classpredicts,regrepredicts,labels=\
            test_range(net,test_loader,state,num_classes)

        # write predictions
        f = open(
            os.path.join(
                new_path, '{}_{}_{}_{}_{}_allpredictions.csv'.format(
                    traineddataset, model_name, opt, lr, testdataset)), 'w')
        f.write('%s,%s,%s\n' % (
            'label',
            'classpred',
            'regreepred',
        ))
        for i in range(len(classpredicts)):
            f.write('%d,%d,%0.2f\n' %
                    (labels[i], classpredicts[i], regrepredicts[i]))
        f.close()

        # Write performance
        f = open(
            os.path.join(
                new_path,
                '{}_{}_{}_{}_{}_results.csv'.format(traineddataset, model_name,
                                                    opt, lr, testdataset)),
            'w')
        f.write('%s,%s,%s,%s,%s\n' %
                ('age', 'number', 'accuracy', 'mae', 'perceived'))
        for i in range(len(gt)):
            f.write('%d,%d,%0.6f,%0.3f,%0.3f\n' %
                    (i, gt[i], tp[i] / gt[i], mae[i] / gt[i],
                     prediction[i] / gt[i]))
        f.close()