def bcn(config, data_file, embeddings, device, chekpoint, dataset, embeddings_type): # extensions : add 2 languages, use a combination of CoVe embeddings (like ELMo) inputs = data.Field(lower=True, include_lengths=True, batch_first=True) labels = data.Field(sequential=False, unk_token=None) print('Generating train, dev, test splits') if dataset == 'IWSLT': # using the IWSLT 2016 TED talk translation task train, dev, test = datasets.IWSLT.splits(root=data_file, exts=['.en', '.de'], fields=[inputs, inputs]) elif dataset == 'SST-2': train, dev, test = datasets.SST.splits(text_field=inputs, label_field=labels, root=data_file, fine_grained=False, train_subtrees=True, filter_pred=lambda ex: ex.label != 'neutral') elif dataset == 'SST-5': train, dev, test = datasets.SST.splits(text_field=inputs, label_field=labels, root=data_file, fine_grained=True, train_subtrees=True) elif dataset == 'IMDB': train, test = datasets.IMDB.splits(text_field=inputs, label_field=labels, root=data_file) train, dev = train.split(split_ratio=0.9, stratified=True) # 0.9 in order to be close to the paper elif dataset == 'TREC-6': train, test = datasets.TREC.splits(text_field=inputs, label_field=labels, root=data_file, fine_grained=False) train, dev = train.split(split_ratio=0.9, stratified=True) elif dataset == 'TREC-50': train, test = datasets.TREC.splits(text_field=inputs, label_field=labels, root=data_file, fine_grained=True) train, dev = train.split() elif dataset == 'SNLI': train, dev, test = datasets.SNLI.splits(text_field=inputs, label_field=labels, root=data_file) else: print('Invalid dataset name detected...') return print('Building vocabulary') inputs.build_vocab(train, dev, test) inputs.vocab.load_vectors(vectors=GloVe(name='840B', dim=300, cache=embeddings)) labels.build_vocab(train, dev, test) train_iter, dev_iter, test_iter = data.BucketIterator.splits( (train, dev, test), batch_size=config["train_batch_size"], device=torch.device(device) if device >= 0 else None, sort_within_batch=True) model = BCN(config=config, n_vocab=len(inputs.vocab), vocabulary=inputs.vocab.vectors, embeddings=embeddings, num_labels=len(labels.vocab.freqs), embeddings_type=embeddings_type) bcn_params = [p for n, p in model.named_parameters() if "mtlstm" not in n and p.requires_grad] criterion = nn.CrossEntropyLoss() optimizer = Adam(bcn_params, lr=0.001) if device != -1: model.to(device) print(model) total_params = sum(p.numel() for p in model.parameters()) total_trainable_params = sum(p.numel() for p in bcn_params if p.requires_grad) print("Total Params:", number_h(total_params)) print("Total Trainable Params:", number_h(total_trainable_params)) ##################################### # Training Pipeline ##################################### trainer = BCNTrainer(model=model, train_loader=None, valid_loader=test_iter, criterion=criterion, device="cpu" if device == -1 else 'cuda', config=config, optimizers=[optimizer]) state = load_checkpoint(chekpoint) model.load_state_dict(state["model"]) print('Generating CoVe') test_loss, y_test, y_pred_test = trainer.test_step() print("Test cls loss is {}".format(test_loss)) print("\n") print("F1 on test set is {}".format(f1_macro(y_test, y_pred_test))) print("\n") print("Accuracy on test set is {}".format(acc(y_test, y_pred_test))) print("\n") return test_loss, f1_macro(y_test, y_pred_test)
def bcn(config, data_file, embeddings, device, dataset, embeddings_type): # extensions : add 2 languages, use a combination of CoVe embeddings (like ELMo) name = "test_model" torch.manual_seed(123) inputs = data.Field(lower=True, include_lengths=True, batch_first=True) labels = data.Field(sequential=False, unk_token=None) print('Generating train, dev, test splits') if dataset == 'IWSLT': # using the IWSLT 2016 TED talk translation task train, dev, test = datasets.IWSLT.splits(root=data_file, exts=['.en', '.de'], fields=[inputs, inputs]) elif dataset == 'SST-2': train, dev, test = datasets.SST.splits( text_field=inputs, label_field=labels, root=data_file, fine_grained=False, train_subtrees=True, filter_pred=lambda ex: ex.label != 'neutral') elif dataset == 'SST-5': train, dev, test = datasets.SST.splits(text_field=inputs, label_field=labels, root=data_file, fine_grained=True, train_subtrees=True) elif dataset == 'IMDB': train, test = datasets.IMDB.splits(text_field=inputs, label_field=labels, root=data_file) train, dev = train.split( split_ratio=0.9, stratified=True) # 0.9 in order to be close to the paper elif dataset == 'TREC-6': train, test = datasets.TREC.splits(text_field=inputs, label_field=labels, root=data_file, fine_grained=False) train, dev = train.split(split_ratio=0.9, stratified=True) elif dataset == 'TREC-50': train, test = datasets.TREC.splits(text_field=inputs, label_field=labels, root=data_file, fine_grained=True) train, dev = train.split() elif dataset == 'SNLI': train, dev, test = datasets.SNLI.splits(text_field=inputs, label_field=labels, root=data_file) else: print('Invalid dataset name detected...') return print('Building vocabulary') inputs.build_vocab(train, dev, test) inputs.vocab.load_vectors( vectors=GloVe(name='840B', dim=300, cache=embeddings)) labels.build_vocab(train, dev, test) train_iter, dev_iter, test_iter = data.BucketIterator.splits( (train, dev, test), batch_size=config["train_batch_size"], device=torch.device(device) if device >= 0 else None, sort_within_batch=True) model = BCN(config=config, n_vocab=len(inputs.vocab), vocabulary=inputs.vocab.vectors, embeddings=embeddings, num_labels=len(labels.vocab.freqs), embeddings_type=embeddings_type) bcn_params = [ p for n, p in model.named_parameters() if "mtlstm" not in n and p.requires_grad ] criterion = nn.CrossEntropyLoss() optimizer = Adam(bcn_params, lr=0.001) if device != -1: model.to(device) print(model) total_params = sum(p.numel() for p in model.parameters()) total_trainable_params = sum(p.numel() for p in bcn_params if p.requires_grad) print("Total Params:", number_h(total_params)) print("Total Trainable Params:", number_h(total_trainable_params)) ##################################### # Training Pipeline ##################################### trainer = BCNTrainer(model=model, train_loader=train_iter, valid_loader=dev_iter, criterion=criterion, device="cpu" if device == -1 else 'cuda', config=config, optimizers=[optimizer]) print('Generating CoVe') #################################################################### # Experiment: logging and visualizing the training process #################################################################### exp = Experiment(name, config, src_dirs=None, output_dir=EXP_DIR) exp.add_metric("ep_loss", "line", "epoch loss class", ["TRAIN", "VAL"]) exp.add_metric("ep_f1", "line", "epoch f1", ["TRAIN", "VAL"]) exp.add_metric("ep_acc", "line", "epoch accuracy", ["TRAIN", "VAL"]) exp.add_value("epoch", title="epoch summary") exp.add_value("progress", title="training progress") #################################################################### # Training Loop #################################################################### best_loss = None early_stopping = EarlyStopping("min", config["patience"]) for epoch in range(1, config["epochs"] + 1): train_loss = trainer.train_epoch() print(model.w, model.gama) val_loss, y, y_pred = trainer.eval_epoch() # Calculate accuracy and f1-macro on the evaluation set exp.update_metric("ep_loss", train_loss.item(), "TRAIN") exp.update_metric("ep_loss", val_loss.item(), "VAL") exp.update_metric("ep_f1", 0, "TRAIN") exp.update_metric("ep_f1", f1_macro(y, y_pred), "VAL") exp.update_metric("ep_acc", 0, "TRAIN") exp.update_metric("ep_acc", acc(y, y_pred), "VAL") print() epoch_log = exp.log_metrics(["ep_loss", "ep_f1", "ep_acc"]) print(epoch_log) exp.update_value("epoch", epoch_log) # Save the model if the val loss is the best we've seen so far. if not best_loss or val_loss < best_loss: best_loss = val_loss trainer.best_acc = acc(y, y_pred) trainer.best_f1 = f1_macro(y, y_pred) trainer.checkpoint(name=name) if early_stopping.stop(val_loss): print("Early Stopping (according to cls loss)....") break print("\n" * 2) return best_loss, trainer.best_acc, trainer.best_f1
def sent_clf(dataset, config, opts, transfer=False): from logger.experiment import Experiment opts.name = config["name"] X_train, y_train, _, X_val, y_val, _ = dataset vocab = None if transfer: opts.transfer = config["pretrained_lm"] checkpoint = load_checkpoint(opts.transfer) config["vocab"].update(checkpoint["config"]["vocab"]) dict_pattern_rename(checkpoint["config"]["model"], {"rnn_": "bottom_rnn_"}) config["model"].update(checkpoint["config"]["model"]) vocab = checkpoint["vocab"] #################################################################### # Load Preprocessed Datasets #################################################################### if config["preprocessor"] == "twitter": preprocessor = twitter_preprocessor() else: preprocessor = None print("Building training dataset...") train_set = ClfDataset(X_train, y_train, vocab=vocab, preprocess=preprocessor, vocab_size=config["vocab"]["size"], seq_len=config["data"]["seq_len"]) print("Building validation dataset...") val_set = ClfDataset(X_val, y_val, seq_len=train_set.seq_len, preprocess=preprocessor, vocab=train_set.vocab) src_lengths = [len(x) for x in train_set.data] val_lengths = [len(x) for x in val_set.data] # select sampler & dataloader train_sampler = BucketBatchSampler(src_lengths, config["batch_size"], True) val_sampler = SortedSampler(val_lengths) val_sampler_train = SortedSampler(src_lengths) train_loader = DataLoader(train_set, batch_sampler=train_sampler, num_workers=opts.cores, collate_fn=ClfCollate()) val_loader = DataLoader(val_set, sampler=val_sampler, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate()) val_loader_train_dataset = DataLoader(train_set, sampler=val_sampler_train, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate()) #################################################################### # Model #################################################################### ntokens = len(train_set.vocab) model = Classifier(ntokens, len(set(train_set.labels)), **config["model"]) model.to(opts.device) clf_criterion = nn.CrossEntropyLoss() lm_criterion = nn.CrossEntropyLoss(ignore_index=0) embed_parameters = filter(lambda p: p.requires_grad, model.embed.parameters()) bottom_parameters = filter( lambda p: p.requires_grad, chain(model.bottom_rnn.parameters(), model.vocab.parameters())) if config["model"]["has_att"]: top_parameters = filter( lambda p: p.requires_grad, chain(model.top_rnn.parameters(), model.attention.parameters(), model.classes.parameters())) else: top_parameters = filter( lambda p: p.requires_grad, chain(model.top_rnn.parameters(), model.classes.parameters())) embed_optimizer = optim.ASGD(embed_parameters, lr=0.0001) rnn_optimizer = optim.ASGD(bottom_parameters) top_optimizer = Adam(top_parameters, lr=config["top_lr"]) #################################################################### # Training Pipeline #################################################################### # Trainer: responsible for managing the training process trainer = SentClfTrainer(model, train_loader, val_loader, (lm_criterion, clf_criterion), [embed_optimizer, rnn_optimizer, top_optimizer], config, opts.device, valid_loader_train_set=val_loader_train_dataset, unfreeze_embed=config["unfreeze_embed"], unfreeze_rnn=config["unfreeze_rnn"]) #################################################################### # Experiment: logging and visualizing the training process #################################################################### # exp = Experiment(opts.name, config, src_dirs=opts.source, # output_dir=EXP_DIR) # exp.add_metric("ep_loss_lm", "line", "epoch loss lm", # ["TRAIN", "VAL"]) # exp.add_metric("ep_loss_cls", "line", "epoch loss class", # ["TRAIN", "VAL"]) # exp.add_metric("ep_f1", "line", "epoch f1", ["TRAIN", "VAL"]) # exp.add_metric("ep_acc", "line", "epoch accuracy", ["TRAIN", "VAL"]) # # exp.add_value("epoch", title="epoch summary") # exp.add_value("progress", title="training progress") ep_loss_lm = [10000, 10000] ep_loss_cls = [10000, 10000] ep_f1 = [0, 0] ep_acc = [0, 0] e_log = 0 progress = 0 #################################################################### # Resume Training from a previous checkpoint #################################################################### if transfer: print("Transferring Encoder weights ...") dict_pattern_rename(checkpoint["model"], { "encoder": "bottom_rnn", "decoder": "vocab" }) load_state_dict_subset(model, checkpoint["model"]) print(model) #################################################################### # Training Loop #################################################################### best_loss = None early_stopping = EarlyStopping("min", config["patience"]) for epoch in range(0, config["epochs"]): train_loss = trainer.train_epoch() val_loss, y, y_pred = trainer.eval_epoch(val_set=True) _, y_train, y_pred_train = trainer.eval_epoch(train_set=True) # exp.update_metric("ep_loss_lm", train_loss[0], "TRAIN") ep_loss_lm[0] = train_loss[0] # exp.update_metric("ep_loss_lm", val_loss[0], "VAL") ep_loss_lm[1] = val_loss[0] # exp.update_metric("ep_loss_cls", train_loss[1], "TRAIN") # exp.update_metric("ep_loss_cls", val_loss[1], "VAL") ep_loss_cls[0] = train_loss[1] ep_loss_cls[1] = val_loss[1] # exp.update_metric("ep_f1", f1_macro(y_train, y_pred_train), # "TRAIN") ep_f1[0] = f1_macro(y_train, y_pred_train) # exp.update_metric("ep_f1", f1_macro(y, y_pred), "VAL") ep_f1[1] = f1_macro(y, y_pred) # exp.update_metric("ep_acc", acc(y_train, y_pred_train), "TRAIN") # exp.update_metric("ep_acc", acc(y, y_pred), "VAL") ep_acc[0] = acc(y_train, y_pred_train) ep_acc[1] = acc(y, y_pred) # print('Train lm Loss : {}\nVal lm Loss : {}\nTrain cls Loss : {}\nVal cls Loss : {}\n Train f1 : {}\nVal f1 : {}\nTrain acc : {}\n Val acc : {}'.format( # ep_loss_lm[0], ep_loss_lm[1], ep_loss_cls[0], ep_loss_cls[1], ep_f1[0], ep_f1[1], ep_acc[0], ep_acc[1] # )) # epoch_log = exp.log_metrics(["ep_loss_lm", "ep_loss_cls","ep_f1", "ep_acc"]) epoch_log = 'Train lm Loss : {}\nVal lm Loss : {}\nTrain cls Loss : {}\nVal cls Loss : {}\n Train f1 : {}\nVal f1 : {}\nTrain acc : {}\n Val acc : {}'.format( ep_loss_lm[0], ep_loss_lm[1], ep_loss_cls[0], ep_loss_cls[1], ep_f1[0], ep_f1[1], ep_acc[0], ep_acc[1]) print(epoch_log) # exp.update_value("epoch", epoch_log) e_log = epoch_log # print('') # Save the model if the val loss is the best we've seen so far. # if not best_loss or val_loss[1] < best_loss: # best_loss = val_loss[1] # trainer.best_acc = acc(y, y_pred) # trainer.best_f1 = f1_macro(y, y_pred) # trainer.checkpoint(name=opts.name, timestamp=True) best_loss = val_loss[1] trainer.best_acc = acc(y, y_pred) trainer.best_f1 = f1_macro(y, y_pred) trainer.checkpoint(name=opts.name, tags=str(epoch)) # if early_stopping.stop(val_loss[1]): # print("Early Stopping (according to classification loss)....") # break print("\n" * 2) return best_loss, trainer.best_acc, trainer.best_f1
def clf_features_baseline_runner(yaml, word2idx, idx2word, weights, cluster=False): if cluster is False: from logger.experiment import Experiment # torch.manual_seed(0) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False opts, config = train_options(yaml) #################################################################### # Data Loading and Preprocessing #################################################################### X_train, y_train, X_val, y_val, X_test, y_test = load_dataset( config["data"]["dataset"]) # load word embeddings # if config["data"]["embeddings"] == "wiki.en.vec": # word2idx, idx2word, weights = load_word_vectors_from_fasttext( # os.path.join(EMB_DIR, config["data"]["embeddings"]), # config["data"]["embeddings_dim"]) # else: # word2idx, idx2word, weights = load_word_vectors( # os.path.join(EMB_DIR, config["data"]["embeddings"]), # config["data"]["embeddings_dim"]) #################################################################### # Linguistic Features Loading and Selection #################################################################### # Any features/lexicon should be in the form of a dictionary # For example: lex = {'word':[0., 1., ..., 0.]} # load affect features print("Loading linguistic features...") # todo: streamline feature loading pipeline features, feat_length = load_features(config["data"]["features"]) # assert ... same len # build dataset print("Building training dataset...") train_set = ClfDataset(X_train, y_train, word2idx, feat_length=feat_length, features_dict=features) print("Building validation dataset...") val_set = ClfDataset(X_test, y_test, word2idx, features_dict=features, feat_length=feat_length) test_set = ClfDataset(X_test, y_test, word2idx, features_dict=features, feat_length=feat_length) train_set.truncate(500) val_set.truncate(100) src_lengths = [len(x) for x in train_set.data] val_lengths = [len(x) for x in val_set.data] test_lengths = [len(x) for x in test_set.data] # select sampler & dataloader train_sampler = BucketBatchSampler(src_lengths, config["batch_size"], True) val_sampler = SortedSampler(val_lengths) val_sampler_train = SortedSampler(src_lengths) test_sampler = SortedSampler(test_lengths) train_loader = DataLoader(train_set, batch_sampler=train_sampler, num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) val_loader = DataLoader(val_set, sampler=val_sampler, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) val_loader_train_dataset = DataLoader(train_set, sampler=val_sampler_train, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) test_loader = DataLoader(test_set, sampler=test_sampler, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) #################################################################### # Model #################################################################### model = BaselineConcClassifier(ntokens=weights.shape[0], nclasses=len(set(train_set.labels)), feat_size=feat_length, **config["model"]) model.word_embedding.embedding.weight = nn.Parameter( torch.from_numpy(weights), requires_grad=False) model.to(opts.device) print(model) #################################################################### # Count total parameters of model #################################################################### total_params = sum(p.numel() for p in model.parameters()) total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Total Params:", number_h(total_params)) print("Total Trainable Params:", number_h(total_trainable_params)) if config["class_weights"]: class_weights = class_weigths(train_set.labels, to_pytorch=True) class_weights = class_weights.to(opts.device) criterion = nn.CrossEntropyLoss(weight=class_weights) else: criterion = nn.CrossEntropyLoss() clf_parameters = filter(lambda p: p.requires_grad, model.parameters()) clf_optimizer = Adam(clf_parameters, weight_decay=1e-5) #################################################################### # Training Pipeline #################################################################### _outputs = [] def batch_callback(i_batch, losses, batch_outputs): _outputs.append(batch_outputs) if trainer.step % config["log_interval"] == 0: outputs = list(zip(*_outputs)) _losses = numpy.array(losses[-config["log_interval"]:]).mean(0) exp.update_metric("clf-loss", _losses) _y_hat = torch.cat(outputs[0]).max(-1)[1].cpu().data.numpy() _y = torch.cat(outputs[1]).cpu().data.numpy() f1 = f1_score(_y, _y_hat, average='macro') exp.update_metric("f1-train", f1) losses_log = exp.log_metrics(["clf-loss", 'f1-train']) exp.update_value("progress", trainer.progress_log + "\n" + losses_log) # clean lines and move cursor back up N lines print("\n\033[K" + losses_log) print("\033[F" * (len(losses_log.split("\n")) + 2)) _outputs.clear() # Trainer: responsible for managing the training process trainer = ClfTrainer_withFeatures( model=model, train_loader=train_loader, valid_loader=val_loader, valid_loader_train_set=val_loader_train_dataset, test_loader=test_loader, criterion=criterion, optimizers=clf_optimizer, config=config, device=opts.device, batch_end_callbacks=None) #################################################################### # Experiment: logging and visualizing the training process #################################################################### if cluster is False: exp = Experiment(opts.name, config, src_dirs=opts.source, output_dir=EXP_DIR) exp.add_metric("ep_loss", "line", "epoch loss", ["TRAIN", "VAL"]) exp.add_metric("ep_f1", "line", "epoch f1", ["TRAIN", "VAL"]) exp.add_metric("ep_acc", "line", "epoch accuracy", ["TRAIN", "VAL"]) exp.add_metric("ep_pre", "line", "epoch precision", ["TRAIN", "VAL"]) exp.add_metric("ep_rec", "line", "epoch recall", ["TRAIN", "VAL"]) exp.add_value("epoch", title="epoch summary", vis_type="text") exp.add_value("progress", title="training progress", vis_type="text") #################################################################### # Training Loop #################################################################### best_loss = None early_stopping = Early_stopping("min", config["patience"]) for epoch in range(config["epochs"]): train_loss = trainer.train_epoch() val_loss, y, y_pred = trainer.eval_epoch(val_set=True) _, y_train, y_pred_train = trainer.eval_epoch(train_set=True) # Calculate accuracy and f1-macro on the evaluation set if cluster is False: exp.update_metric("ep_loss", train_loss.item(), "TRAIN") exp.update_metric("ep_loss", val_loss.item(), "VAL") exp.update_metric("ep_f1", f1_macro(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_f1", f1_macro(y, y_pred), "VAL") exp.update_metric("ep_acc", acc(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_acc", acc(y, y_pred), "VAL") exp.update_metric("ep_pre", precision_macro(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_pre", precision_macro(y, y_pred), "VAL") exp.update_metric("ep_rec", recall_macro(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_rec", recall_macro(y, y_pred), "VAL") print() epoch_log = exp.log_metrics( ["ep_loss", "ep_f1", "ep_acc", "ep_pre", "ep_rec"]) print(epoch_log) exp.update_value("epoch", epoch_log) exp.save() else: print("epoch: {}, train loss: {}, val loss: {}, f1: {}".format( epoch, train_loss.item(), val_loss.item(), f1_macro(y, y_pred))) # Save the model if the validation loss is the best we've seen so far. if not best_loss or val_loss < best_loss: best_loss = val_loss trainer.best_val_loss = best_loss trainer.acc = acc(y, y_pred) trainer.f1 = f1_macro(y, y_pred) trainer.precision = precision_macro(y, y_pred) trainer.recall = recall_macro(y, y_pred) trainer.checkpoint(name=opts.name, verbose=False) if early_stopping.stop(val_loss): print("Early Stopping...") break print("\n") # return trainer.best_val_loss, trainer.acc, trainer.f1, trainer.precision, trainer.recall ################# # Test ################# _, y_test_, y_test_predicted = trainer.eval_epoch(test_set=True) f1_test = f1_macro(y_test_, y_test_predicted) acc_test = acc(y_test_, y_test_predicted) print("#" * 33) print("F1 for test set: {}".format(f1_test)) print("Accuracy for test set: {}".format(acc_test)) print("#" * 33) return trainer.best_val_loss, trainer.acc, trainer.f1, trainer.precision, trainer.recall, f1_test, acc_test
# Load Trained Model ##################################################################### model.to(device) print(model) ##################################################################### # Evaluate Trained Model on test set & Calculate predictions ##################################################################### labels, predicted, posteriors, attentions, texts = test_clf(model=model, iterator=test_loader, device=device) # avg_posteriors = numpy.mean(numpy.stack(posteriors, axis=0), axis=0) # predictions = numpy.argmax(avg_posteriors, 1) accuracy = acc(labels, predicted) f1 = f1_macro(labels, predicted) print("{}".format(checkpoint_name)) print("Test F1: {}".format(f1)) print("") # words = [] # for sample in texts: # sample_words = [] # if 0 in sample: # sample = numpy.delete(sample, numpy.where(sample == 0)) # for id in sample: # sample_words.append(idx2word[id]) # words.append(sample_words) # # # json for neat vision #
def sent_clf_no_aux(dataset, config, opts, transfer=False): from logger.experiment import Experiment opts.name = config["name"] X_train, y_train, X_val, y_val = dataset vocab = None if transfer: opts.transfer = config["pretrained_lm"] checkpoint = load_checkpoint(opts.transfer) config["vocab"].update(checkpoint["config"]["vocab"]) dict_pattern_rename(checkpoint["config"]["model"], {"rnn_": "bottom_rnn_"}) config["model"].update(checkpoint["config"]["model"]) vocab = checkpoint["vocab"] #################################################################### # Data Loading and Preprocessing #################################################################### if config["preprocessor"] == "twitter": preprocessor = twitter_preprocessor() else: preprocessor = None print("Building training dataset...") train_set = ClfDataset(X_train, y_train, vocab=vocab, preprocess=preprocessor, vocab_size=config["vocab"]["size"], seq_len=config["data"]["seq_len"]) print("Building validation dataset...") val_set = ClfDataset(X_val, y_val, seq_len=train_set.seq_len, preprocess=preprocessor, vocab=train_set.vocab) src_lengths = [len(x) for x in train_set.data] val_lengths = [len(x) for x in val_set.data] # select sampler & dataloader train_sampler = BucketBatchSampler(src_lengths, config["batch_size"], True) val_sampler = SortedSampler(val_lengths) val_sampler_train = SortedSampler(src_lengths) train_loader = DataLoader(train_set, batch_sampler=train_sampler, num_workers=opts.cores, collate_fn=ClfCollate()) val_loader = DataLoader(val_set, sampler=val_sampler, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate()) val_loader_train_dataset = DataLoader(train_set, sampler=val_sampler_train, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate()) #################################################################### # Model #################################################################### ntokens = len(train_set.vocab) model = NaiveClassifier(ntokens, len(set(train_set.labels)), attention=config["model"]["has_att"], **config["model"]) model.to(opts.device) criterion = nn.CrossEntropyLoss() if config["gu"]: embed_parameters = filter(lambda p: p.requires_grad, model.embed.parameters()) bottom_parameters = filter(lambda p: p.requires_grad, chain(model.bottom_rnn.parameters())) if config["model"]["has_att"]: top_parameters = filter( lambda p: p.requires_grad, chain(model.attention.parameters(), model.classes.parameters())) else: top_parameters = filter(lambda p: p.requires_grad, model.classes.parameters()) embed_optimizer = Adam(embed_parameters) rnn_optimizer = Adam(bottom_parameters) top_optimizer = Adam(top_parameters) # Trainer: responsible for managing the training process trainer = SentClfNoAuxTrainer( model, train_loader, val_loader, criterion, [embed_optimizer, rnn_optimizer, top_optimizer], config, opts.device, valid_loader_train_set=val_loader_train_dataset, unfreeze_embed=config["unfreeze_embed"], unfreeze_rnn=config["unfreeze_rnn"]) else: parameters = filter(lambda p: p.requires_grad, model.parameters()) optimizer = optim.Adam(parameters, lr=config["top_lr"]) # Trainer: responsible for managing the training process trainer = SentClfNoAuxTrainer( model, train_loader, val_loader, criterion, [optimizer], config, opts.device, valid_loader_train_set=val_loader_train_dataset) #################################################################### # Experiment: logging and visualizing the training process #################################################################### exp = Experiment(opts.name, config, src_dirs=opts.source, output_dir=EXP_DIR) exp.add_metric("ep_loss", "line", "epoch loss class", ["TRAIN", "VAL"]) exp.add_metric("ep_f1", "line", "epoch f1", ["TRAIN", "VAL"]) exp.add_metric("ep_acc", "line", "epoch accuracy", ["TRAIN", "VAL"]) exp.add_value("epoch", title="epoch summary") exp.add_value("progress", title="training progress") #################################################################### # Resume Training from a previous checkpoint #################################################################### if transfer: print("Transferring Encoder weights ...") dict_pattern_rename(checkpoint["model"], {"encoder": "bottom_rnn"}) load_state_dict_subset(model, checkpoint["model"]) print(model) #################################################################### # Training Loop #################################################################### best_loss = None early_stopping = EarlyStopping("min", config["patience"]) for epoch in range(1, config["epochs"] + 1): train_loss = trainer.train_epoch() val_loss, y, y_pred = trainer.eval_epoch(val_set=True) _, y_train, y_pred_train = trainer.eval_epoch(train_set=True) # Calculate accuracy and f1-macro on the evaluation set exp.update_metric("ep_loss", train_loss.item(), "TRAIN") exp.update_metric("ep_loss", val_loss.item(), "VAL") exp.update_metric("ep_f1", f1_macro(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_f1", f1_macro(y, y_pred), "VAL") exp.update_metric("ep_acc", acc(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_acc", acc(y, y_pred), "VAL") print() epoch_log = exp.log_metrics(["ep_loss", "ep_f1", "ep_acc"]) print(epoch_log) exp.update_value("epoch", epoch_log) ############################################################### # Unfreezing the model after X epochs ############################################################### # Save the model if the val loss is the best we've seen so far. if not best_loss or val_loss < best_loss: best_loss = val_loss trainer.best_acc = acc(y, y_pred) trainer.best_f1 = f1_macro(y, y_pred) trainer.checkpoint(name=opts.name) if early_stopping.stop(val_loss): print("Early Stopping (according to cls loss)....") break print("\n" * 2) return best_loss, trainer.best_acc, trainer.best_f1