def test_client_datasets_fn_with_random_seed(self):
    tff_dataset = tff.simulation.client_data.ConcreteClientData(
        [0, 1, 2, 3, 4], create_tf_dataset_for_client)

    client_datasets_fn_1 = training_utils.build_client_datasets_fn(
        tff_dataset, clients_per_round=1, random_seed=363)
    client_datasets_1 = client_datasets_fn_1(round_num=5)
    sample_batch_1 = next(iter(client_datasets_1[0]))

    client_datasets_fn_2 = training_utils.build_client_datasets_fn(
        tff_dataset, clients_per_round=1, random_seed=363)
    client_datasets_2 = client_datasets_fn_2(round_num=5)
    sample_batch_2 = next(iter(client_datasets_2[0]))

    self.assertAllClose(sample_batch_1, sample_batch_2)
 def test_build_client_datasets_fn(self):
   tff_dataset = tff.simulation.client_data.ConcreteClientData(
       [2], create_tf_dataset_for_client)
   client_datasets_fn = training_utils.build_client_datasets_fn(
       tff_dataset, clients_per_round=1)
   client_datasets = client_datasets_fn(round_num=7)
   sample_batch = next(iter(client_datasets[0]))
   reference_batch = next(iter(create_tf_dataset_for_client(2)))
   self.assertAllClose(sample_batch, reference_batch)
  def test_different_random_seed_give_different_clients(self):
    tff_dataset = tff.simulation.client_data.ConcreteClientData(
        list(range(100)), create_tf_dataset_for_client)

    client_datasets_fn_1 = training_utils.build_client_datasets_fn(
        tff_dataset, clients_per_round=50, random_seed=1)
    client_datasets_1 = client_datasets_fn_1(round_num=1001)
    sample_batches_1 = [
        next(iter(client_dataset)) for client_dataset in client_datasets_1
    ]

    client_datasets_fn_2 = training_utils.build_client_datasets_fn(
        tff_dataset, clients_per_round=50, random_seed=2)
    client_datasets_2 = client_datasets_fn_2(round_num=1001)
    sample_batches_2 = [
        next(iter(client_dataset)) for client_dataset in client_datasets_2
    ]

    self.assertNotAllClose(sample_batches_1, sample_batches_2)
  def test_client_datasets_fn_without_random_seed(self):
    tff_dataset = tff.simulation.client_data.ConcreteClientData(
        list(range(100)), create_tf_dataset_for_client)
    client_datasets_fn = training_utils.build_client_datasets_fn(
        tff_dataset, train_clients_per_round=50)
    client_datasets_1 = client_datasets_fn(round_num=0)
    sample_batches_1 = [
        next(iter(client_dataset)) for client_dataset in client_datasets_1
    ]

    client_datasets_2 = client_datasets_fn(round_num=0)
    sample_batches_2 = [
        next(iter(client_dataset)) for client_dataset in client_datasets_2
    ]
    self.assertNotAllClose(sample_batches_1, sample_batches_2)
示例#5
0
def run_experiment():
    """Data preprocessing and experiment execution."""
    emnist_train, emnist_test = emnist_dataset.get_emnist_datasets(
        FLAGS.client_batch_size,
        FLAGS.client_epochs_per_round,
        only_digits=FLAGS.only_digits)

    example_dataset = emnist_train.create_tf_dataset_for_client(
        emnist_train.client_ids[0])
    input_spec = example_dataset.element_spec

    client_datasets_fn = training_utils.build_client_datasets_fn(
        emnist_train, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    client_optimizer_fn = functools.partial(
        utils_impl.create_optimizer_from_flags, 'client')
    server_optimizer_fn = functools.partial(
        utils_impl.create_optimizer_from_flags, 'server')

    def tff_model_fn():
        keras_model = model_builder()
        return tff.learning.from_keras_model(keras_model,
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    if FLAGS.use_compression:
        # We create a `MeasuredProcess` for broadcast process and a
        # `MeasuredProcess` for aggregate process by providing the
        # `_broadcast_encoder_fn` and `_mean_encoder_fn` to corresponding utilities.
        # The fns are called once for each of the model weights created by
        # tff_model_fn, and return instances of appropriate encoders.
        encoded_broadcast_process = (
            tff.learning.framework.build_encoded_broadcast_process_from_model(
                tff_model_fn, _broadcast_encoder_fn))
        encoded_mean_process = (
            tff.learning.framework.build_encoded_mean_process_from_model(
                tff_model_fn, _mean_encoder_fn))
    else:
        encoded_broadcast_process = None
        encoded_mean_process = None

    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=tff_model_fn,
        client_optimizer_fn=client_optimizer_fn,
        server_optimizer_fn=server_optimizer_fn,
        aggregation_process=encoded_mean_process,
        broadcast_process=encoded_broadcast_process)

    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      hparam_dict=hparam_dict,
                      **training_loop_dict)
示例#6
0
def run_federated(
    iterative_process_builder: Callable[..., tff.templates.IterativeProcess],
    evaluation_computation_builder: Callable[..., tff.Computation],
    client_batch_size: int,
    clients_per_round: int,
    global_variables_only: bool,
    vocab_size: int = 10000,
    num_oov_buckets: int = 1,
    sequence_length: int = 20,
    max_elements_per_user: int = 1000,
    embedding_size: int = 96,
    latent_size: int = 670,
    num_layers: int = 1,
    total_rounds: int = 1500,
    experiment_name: str = 'federated_so_nwp',
    root_output_dir: str = '/tmp/fed_recon',
    split_dataset_strategy: str = federated_trainer_utils
    .SPLIT_STRATEGY_AGGREGATED,
    split_dataset_proportion: int = 2,
    compose_dataset_computation: bool = False,
    **kwargs):
  """Runs an iterative process on the Stack Overflow next word prediction task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  This model only sends updates for its embeddings corresponding to the most
  common words. Embeddings for out of vocabulary buckets are reconstructed on
  device at the beginning of each round, and destroyed at the end of these
  rounds.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, a
      `loss_fn`, a `metrics_fn`, and a `client_weight_fn`, and returns a
      `tff.templates.IterativeProcess`. The `model_fn` must return a
      `reconstruction_model.ReconstructionModel`. See `federated_trainer.py` for
      an example.
    evaluation_computation_builder: A function that accepts a no-arg `model_fn`,
      a loss_fn`, and a `metrics_fn`, and returns a `tff.Computation` for
      federated reconstruction evaluation. The `model_fn` must return a
      `reconstruction_model.ReconstructionModel`. See `federated_trainer.py` for
      an example.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    global_variables_only: If True, the `ReconstructionModel` contains all model
      variables as global variables. This can be useful for baselines involving
      aggregating all variables.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    embedding_size: The dimension of the word embedding layer.
    latent_size: The dimension of the latent units in the recurrent layers.
    num_layers: The number of stacked recurrent layers to use.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    split_dataset_strategy: The method to use to split the data. Must be one of
      `skip`, in which case every `split_dataset_proportion` example is used for
      reconstruction, or `aggregated`, when the first
      1/`split_dataset_proportion` proportion of the examples is used for
      reconstruction.
    split_dataset_proportion: Parameter controlling how much of the data is used
      for reconstruction. If `split_dataset_proportion` is n, then 1 / n of the
      data is used for reconstruction.
    compose_dataset_computation: Whether to compose dataset computation with
      training and evaluation computations. If True, may speed up experiments by
      parallelizing dataset computations in multimachine setups. Not currently
      supported in OSS.
    **kwargs: Additional arguments configuring the training loop. For details on
      supported arguments, see `training_loop.py`.
  """

  loss_fn = functools.partial(
      tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

  special_tokens = stackoverflow_word_prediction.get_special_tokens(
      vocab_size, num_oov_buckets)
  pad_token = special_tokens.pad
  oov_tokens = special_tokens.oov
  eos_token = special_tokens.eos

  def metrics_fn():
    return [
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_with_oov', masked_tokens=[pad_token]),
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov', masked_tokens=[pad_token] + oov_tokens),
        # Notice BOS never appears in ground truth.
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov_or_eos',
            masked_tokens=[pad_token, eos_token] + oov_tokens),
        keras_metrics.NumBatchesCounter(),
        keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
    ]

  train_clientdata, validation_clientdata, test_clientdata = (
      tff.simulation.datasets.stackoverflow.load_data())

  vocab = stackoverflow_word_prediction.create_vocab(vocab_size)
  dataset_preprocess_comp = stackoverflow_dataset.create_preprocess_fn(
      vocab=vocab,
      num_oov_buckets=num_oov_buckets,
      client_batch_size=client_batch_size,
      max_sequence_length=sequence_length,
      max_elements_per_client=max_elements_per_user,
      feature_dtypes=train_clientdata.element_type_structure,
      sort_by_date=True)

  input_spec = dataset_preprocess_comp.type_signature.result.element

  model_fn = functools.partial(
      models.create_recurrent_reconstruction_model,
      vocab_size=vocab_size,
      num_oov_buckets=num_oov_buckets,
      embedding_size=embedding_size,
      latent_size=latent_size,
      num_layers=num_layers,
      input_spec=input_spec,
      global_variables_only=global_variables_only)

  def client_weight_fn(local_outputs):
    # Num_tokens is a tensor with type int64[1], to use as a weight need
    # a float32 scalar.
    return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

  iterative_process = iterative_process_builder(
      model_fn,
      loss_fn=loss_fn,
      metrics_fn=metrics_fn,
      client_weight_fn=client_weight_fn,
      dataset_split_fn_builder=functools.partial(
          federated_trainer_utils.build_dataset_split_fn,
          split_dataset_strategy=split_dataset_strategy,
          split_dataset_proportion=split_dataset_proportion))

  base_eval_computation = evaluation_computation_builder(
      model_fn,
      loss_fn=loss_fn,
      metrics_fn=metrics_fn,
      dataset_split_fn_builder=functools.partial(
          federated_trainer_utils.build_dataset_split_fn,
          split_dataset_strategy=split_dataset_strategy,
          split_dataset_proportion=split_dataset_proportion))

  if compose_dataset_computation:
    # Compose dataset computations with client training and evaluation to avoid
    # linear cost of computing centrally. This changes the expected input of
    # the `IterativeProcess` and `tff.Computation` to be a list of client IDs
    # instead of datasets.
    training_process = (
        tff.simulation.compose_dataset_computation_with_iterative_process(
            dataset_preprocess_comp, iterative_process))
    training_process = (
        tff.simulation.compose_dataset_computation_with_iterative_process(
            train_clientdata.dataset_computation, training_process))
    training_process.get_model_weights = iterative_process.get_model_weights

    base_eval_computation = (
        tff.simulation.compose_dataset_computation_with_computation(
            dataset_preprocess_comp, base_eval_computation))
    val_computation = (
        tff.simulation.compose_dataset_computation_with_computation(
            validation_clientdata.dataset_computation, base_eval_computation))
    test_computation = (
        tff.simulation.compose_dataset_computation_with_computation(
            test_clientdata.dataset_computation, base_eval_computation))

    # Create client sampling functions for each of train/val/test.
    # We need to sample client IDs, not datasets, and we do not need to apply
    # `dataset_preprocess_comp` since this is applied as part of the training
    # process and evaluation computation.
    train_client_datasets_fn = federated_trainer_utils.build_list_sample_fn(
        train_clientdata.client_ids, size=clients_per_round, replace=False)
    val_client_datasets_fn = federated_trainer_utils.build_list_sample_fn(
        validation_clientdata.client_ids, size=clients_per_round, replace=False)
    test_client_datasets_fn = federated_trainer_utils.build_list_sample_fn(
        test_clientdata.client_ids, size=clients_per_round, replace=False)
  else:
    training_process = iterative_process
    val_computation = base_eval_computation
    test_computation = base_eval_computation
    # Apply dataset computations.
    train_clientdata = train_clientdata.preprocess(dataset_preprocess_comp)
    validation_clientdata = validation_clientdata.preprocess(
        dataset_preprocess_comp)
    test_clientdata = test_clientdata.preprocess(dataset_preprocess_comp)

    # Create client sampling functions for each of train/val/test.
    train_client_datasets_fn = training_utils.build_client_datasets_fn(
        train_clientdata, clients_per_round=clients_per_round)
    val_client_datasets_fn = training_utils.build_client_datasets_fn(
        validation_clientdata, clients_per_round=clients_per_round)
    test_client_datasets_fn = training_utils.build_client_datasets_fn(
        test_clientdata, clients_per_round=clients_per_round)

  # Create final evaluation functions to pass to `training_loop`.
  val_fn = federated_trainer_utils.build_eval_fn(
      evaluation_computation=val_computation,
      client_datasets_fn=val_client_datasets_fn,
      get_model=training_process.get_model_weights)
  test_fn = federated_trainer_utils.build_eval_fn(
      evaluation_computation=test_computation,
      client_datasets_fn=test_client_datasets_fn,
      get_model=training_process.get_model_weights)
  test_fn = functools.partial(test_fn, round_num=0)

  training_loop.run(
      iterative_process=training_process,
      client_datasets_fn=train_client_datasets_fn,
      validation_fn=val_fn,
      test_fn=test_fn,
      total_rounds=total_rounds,
      experiment_name=experiment_name,
      root_output_dir=root_output_dir,
      **kwargs)
def configure_training(
        task_spec: training_specs.TaskSpec,
        vocab_tokens_size: int = 10000,
        vocab_tags_size: int = 500,
        max_elements_per_user: int = 1000,
        num_validation_examples: int = 10000) -> training_specs.RunnerSpec:
    """Configures training for the Stack Overflow tag prediction task.

  This tag prediction is performed via multi-class one-versus-rest logistic
  regression. This method will load and pre-process datasets and construct a
  model used for the task. It then uses `iterative_process_builder` to create an
  iterative process compatible with `federated_research.utils.training_loop`.

  Args:
    task_spec: A `TaskSpec` class for creating federated training tasks.
    vocab_tokens_size: Integer dictating the number of most frequent words to
      use in the vocabulary.
    vocab_tags_size: Integer dictating the number of most frequent tags to use
      in the label creation.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """

    stackoverflow_train, _, _ = tff.simulation.datasets.stackoverflow.load_data(
    )

    _, stackoverflow_validation, stackoverflow_test = stackoverflow_tag_prediction.get_centralized_datasets(
        train_batch_size=task_spec.client_batch_size,
        word_vocab_size=vocab_tokens_size,
        tag_vocab_size=vocab_tags_size,
        num_validation_examples=num_validation_examples)

    word_vocab = stackoverflow_tag_prediction.create_word_vocab(
        vocab_tokens_size)
    tag_vocab = stackoverflow_tag_prediction.create_tag_vocab(vocab_tags_size)

    train_preprocess_fn = stackoverflow_tag_prediction.create_preprocess_fn(
        word_vocab=word_vocab,
        tag_vocab=tag_vocab,
        client_batch_size=task_spec.client_batch_size,
        client_epochs_per_round=task_spec.client_epochs_per_round,
        max_elements_per_client=max_elements_per_user)
    input_spec = train_preprocess_fn.type_signature.result.element

    model_builder = functools.partial(
        stackoverflow_lr_models.create_logistic_model,
        vocab_tokens_size=vocab_tokens_size,
        vocab_tags_size=vocab_tags_size)

    loss_builder = functools.partial(tf.keras.losses.BinaryCrossentropy,
                                     from_logits=False,
                                     reduction=tf.keras.losses.Reduction.SUM)

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    iterative_process = task_spec.iterative_process_builder(tff_model_fn)

    if hasattr(stackoverflow_train, 'dataset_computation'):

        @tff.tf_computation(tf.string)
        def build_train_dataset_from_client_id(client_id):
            client_dataset = stackoverflow_train.dataset_computation(client_id)
            return train_preprocess_fn(client_dataset)

        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            build_train_dataset_from_client_id, iterative_process)
        client_ids_fn = training_utils.build_sample_fn(
            stackoverflow_train.client_ids,
            size=task_spec.clients_per_round,
            replace=False,
            random_seed=task_spec.client_datasets_random_seed)
        # We convert the output to a list (instead of an np.ndarray) so that it can
        # be used as input to the iterative process.
        client_sampling_fn = lambda x: list(client_ids_fn(x))

    else:
        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            train_preprocess_fn, iterative_process)
        client_sampling_fn = training_utils.build_client_datasets_fn(
            dataset=stackoverflow_train,
            clients_per_round=task_spec.clients_per_round,
            random_seed=task_spec.client_datasets_random_seed)

    training_process.get_model_weights = iterative_process.get_model_weights

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=stackoverflow_validation,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

    test_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=stackoverflow_validation.concatenate(stackoverflow_test),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    return training_specs.RunnerSpec(iterative_process=training_process,
                                     client_datasets_fn=client_sampling_fn,
                                     validation_fn=validation_fn,
                                     test_fn=test_fn)
示例#8
0
def configure_training(task_spec: training_specs.TaskSpec,
                       eval_spec: Optional[training_specs.EvalSpec] = None,
                       model: str = 'cnn') -> training_specs.RunnerSpec:
  """Configures training for the EMNIST character recognition task.

  This method will load and pre-process datasets and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process compatible with `federated_research.utils.training_loop`.

  Args:
    task_spec: A `TaskSpec` class for creating federated training tasks.
    eval_spec: An `EvalSpec` class for configuring federated evaluation. If set
      to None, centralized evaluation is used for validation and testing
      instead.
    model: A string specifying the model used for character recognition. Can be
      one of `cnn` and `2nn`, corresponding to a CNN model and a densely
      connected 2-layer model (respectively).

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """
  emnist_task = 'digit_recognition'

  emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data(
      only_digits=False)

  train_preprocess_fn = emnist_dataset.create_preprocess_fn(
      num_epochs=task_spec.client_epochs_per_round,
      batch_size=task_spec.client_batch_size,
      emnist_task=emnist_task)

  input_spec = train_preprocess_fn.type_signature.result.element

  if model == 'cnn':
    model_builder = functools.partial(
        emnist_models.create_conv_dropout_model, only_digits=False)
  elif model == '2nn':
    model_builder = functools.partial(
        emnist_models.create_two_hidden_layer_model, only_digits=False)
  else:
    raise ValueError(
        'Cannot handle model flag [{!s}], must be one of {!s}.'.format(
            model, EMNIST_MODELS))

  loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
  metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

  def tff_model_fn() -> tff.learning.Model:
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  iterative_process = task_spec.iterative_process_builder(tff_model_fn)

  clients_per_train_round = min(task_spec.clients_per_round,
                                TOTAL_NUM_TRAIN_CLIENTS)

  if hasattr(emnist_train, 'dataset_computation'):

    @tff.tf_computation(tf.string)
    def build_train_dataset_from_client_id(client_id):
      client_dataset = emnist_train.dataset_computation(client_id)
      return train_preprocess_fn(client_dataset)

    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        build_train_dataset_from_client_id, iterative_process)
    client_ids_fn = training_utils.build_sample_fn(
        emnist_train.client_ids,
        size=clients_per_train_round,
        replace=False,
        random_seed=task_spec.sampling_random_seed)
    # We convert the output to a list (instead of an np.ndarray) so that it can
    # be used as input to the iterative process.
    client_sampling_fn = lambda x: list(client_ids_fn(x))

  else:
    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_preprocess_fn, iterative_process)
    client_sampling_fn = training_utils.build_client_datasets_fn(
        dataset=emnist_train,
        clients_per_round=clients_per_train_round,
        random_seed=task_spec.sampling_random_seed)

  training_process.get_model_weights = iterative_process.get_model_weights

  if eval_spec:

    if eval_spec.clients_per_validation_round is None:
      clients_per_validation_round = TOTAL_NUM_TEST_CLIENTS
    else:
      clients_per_validation_round = min(eval_spec.clients_per_validation_round,
                                         TOTAL_NUM_TEST_CLIENTS)

    if eval_spec.clients_per_test_round is None:
      clients_per_test_round = TOTAL_NUM_TEST_CLIENTS
    else:
      clients_per_test_round = min(eval_spec.clients_per_test_round,
                                   TOTAL_NUM_TEST_CLIENTS)

    test_preprocess_fn = emnist_dataset.create_preprocess_fn(
        num_epochs=1,
        batch_size=eval_spec.client_batch_size,
        shuffle_buffer_size=1,
        emnist_task=emnist_task)
    emnist_test = emnist_test.preprocess(test_preprocess_fn)

    def eval_metrics_builder():
      return [
          tf.keras.metrics.SparseCategoricalCrossentropy(),
          tf.keras.metrics.SparseCategoricalAccuracy()
      ]

    federated_eval_fn = training_utils.build_federated_evaluate_fn(
        model_builder=model_builder, metrics_builder=eval_metrics_builder)

    validation_client_sampling_fn = training_utils.build_client_datasets_fn(
        emnist_test,
        clients_per_validation_round,
        random_seed=eval_spec.sampling_random_seed)
    test_client_sampling_fn = training_utils.build_client_datasets_fn(
        emnist_test,
        clients_per_test_round,
        random_seed=eval_spec.sampling_random_seed)

    def validation_fn(model_weights, round_num):
      validation_clients = validation_client_sampling_fn(round_num)
      return federated_eval_fn(model_weights, validation_clients)

    def test_fn(model_weights):
      # We fix the round number to get deterministic behavior
      test_round_num = 0
      test_clients = test_client_sampling_fn(test_round_num)
      return federated_eval_fn(model_weights, test_clients)

  else:
    _, central_emnist_test = emnist_dataset.get_centralized_datasets(
        only_digits=False, emnist_task=emnist_task)

    test_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=central_emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: test_fn(model_weights)

  return training_specs.RunnerSpec(
      iterative_process=training_process,
      client_datasets_fn=client_sampling_fn,
      validation_fn=validation_fn,
      test_fn=test_fn)
示例#9
0
def run_federated(
    iterative_process_builder: Callable[..., tff.templates.IterativeProcess],
    client_epochs_per_round: int,
    client_batch_size: int,
    clients_per_round: int,
    client_datasets_random_seed: Optional[int] = None,
    model: Optional[str] = 'cnn',
    total_rounds: Optional[int] = 1500,
    experiment_name: Optional[str] = 'federated_emnist_cr',
    root_output_dir: Optional[str] = '/tmp/fed_opt',
    **kwargs):
  """Runs an iterative process on the EMNIST character recognition task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    model: A string specifying the model used for character recognition.
      Can be one of `cnn` and `2nn`, corresponding to a CNN model and a densely
      connected 2-layer model (respectively).
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

  emnist_train, _ = emnist_dataset.get_federated_datasets(
      train_client_batch_size=client_batch_size,
      train_client_epochs_per_round=client_epochs_per_round,
      only_digits=False)

  _, emnist_test = emnist_dataset.get_centralized_datasets(only_digits=False)

  input_spec = emnist_train.create_tf_dataset_for_client(
      emnist_train.client_ids[0]).element_spec

  if model == 'cnn':
    model_builder = functools.partial(
        emnist_models.create_conv_dropout_model, only_digits=False)
  elif model == '2nn':
    model_builder = functools.partial(
        emnist_models.create_two_hidden_layer_model, only_digits=False)
  else:
    raise ValueError(
        'Cannot handle model flag [{!s}], must be one of {!s}.'.format(
            model, EMNIST_MODELS))

  loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
  metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

  def tff_model_fn() -> tff.learning.Model:
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  training_process = iterative_process_builder(tff_model_fn)

  client_datasets_fn = training_utils.build_client_datasets_fn(
      dataset=emnist_train,
      clients_per_round=clients_per_round,
      random_seed=client_datasets_random_seed)

  test_fn = training_utils.build_centralized_evaluate_fn(
      eval_dataset=emnist_test,
      model_builder=model_builder,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  validation_fn = lambda model_weights, round_num: test_fn(model_weights)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  training_loop.run(
      iterative_process=training_process,
      client_datasets_fn=client_datasets_fn,
      validation_fn=validation_fn,
      test_fn=test_fn,
      total_rounds=total_rounds,
      experiment_name=experiment_name,
      root_output_dir=root_output_dir,
      **kwargs)
示例#10
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError('Expected no command-line arguments, '
                             'got: {}'.format(argv))
    tff.backends.native.set_local_execution_context(max_fanout=10)

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=FLAGS.vocab_size,
        embedding_size=FLAGS.embedding_size,
        latent_size=FLAGS.latent_size,
        num_layers=FLAGS.num_layers,
        shared_embedding=FLAGS.shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_dataset.get_special_tokens(FLAGS.vocab_size)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token]),
        ]

    datasets = stackoverflow_dataset.construct_word_level_datasets(
        FLAGS.vocab_size, FLAGS.client_batch_size,
        FLAGS.client_epochs_per_round, FLAGS.sequence_length,
        FLAGS.max_elements_per_user, FLAGS.num_validation_examples)
    train_dataset, validation_dataset, test_dataset = datasets

    if FLAGS.uniform_weighting:

        def client_weight_fn(local_outputs):
            del local_outputs
            return 1.0
    else:

        def client_weight_fn(local_outputs):
            return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    def model_fn():
        return tff.learning.from_keras_model(
            model_builder(),
            loss_builder(),
            input_spec=validation_dataset.element_spec,
            metrics=metrics_builder())

    if FLAGS.noise_multiplier is not None:
        if not FLAGS.uniform_weighting:
            raise ValueError(
                'Differential privacy is only implemented for uniform weighting.'
            )

        dp_query = tff.utils.build_dp_query(
            clip=FLAGS.clip,
            noise_multiplier=FLAGS.noise_multiplier,
            expected_total_weight=FLAGS.clients_per_round,
            adaptive_clip_learning_rate=FLAGS.adaptive_clip_learning_rate,
            target_unclipped_quantile=FLAGS.target_unclipped_quantile,
            clipped_count_budget_allocation=FLAGS.
            clipped_count_budget_allocation,
            expected_clients_per_round=FLAGS.clients_per_round)

        weights_type = tff.learning.framework.weights_type_from_model(model_fn)
        aggregation_process = tff.utils.build_dp_aggregate_process(
            weights_type.trainable, dp_query)
    else:
        aggregation_process = None

    server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'server')
    client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'client')

    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=model_fn,
        server_optimizer_fn=server_optimizer_fn,
        client_weight_fn=client_weight_fn,
        client_optimizer_fn=client_optimizer_fn,
        aggregation_process=aggregation_process)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    test_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=test_fn,
                      hparam_dict=hparam_dict,
                      **training_loop_dict)
示例#11
0
def run_experiment():
    """Data preprocessing and experiment execution."""
    emnist_train, _ = emnist_dataset.get_federated_datasets(
        train_client_batch_size=FLAGS.client_batch_size,
        train_client_epochs_per_round=FLAGS.client_epochs_per_round,
        only_digits=False)

    _, emnist_test = emnist_dataset.get_centralized_datasets()

    example_dataset = emnist_train.create_tf_dataset_for_client(
        emnist_train.client_ids[0])
    input_spec = example_dataset.element_spec

    client_datasets_fn = training_utils.build_client_datasets_fn(
        emnist_train, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)
    validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

    client_optimizer_fn = functools.partial(
        utils_impl.create_optimizer_from_flags, 'client')
    server_optimizer_fn = functools.partial(
        utils_impl.create_optimizer_from_flags, 'server')

    def tff_model_fn():
        keras_model = model_builder()
        return tff.learning.from_keras_model(keras_model,
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    if FLAGS.use_compression:
        # We create a `MeasuredProcess` for broadcast process and a
        # `MeasuredProcess` for aggregate process by providing the
        # `_broadcast_encoder_fn` and `_mean_encoder_fn` to corresponding utilities.
        # The fns are called once for each of the model weights created by
        # tff_model_fn, and return instances of appropriate encoders.
        encoded_broadcast_process = (
            tff.learning.framework.build_encoded_broadcast_process_from_model(
                tff_model_fn, _broadcast_encoder_fn))
        encoded_mean_process = (
            tff.learning.framework.build_encoded_mean_process_from_model(
                tff_model_fn, _mean_encoder_fn))
    else:
        encoded_broadcast_process = None
        encoded_mean_process = None

    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=tff_model_fn,
        client_optimizer_fn=client_optimizer_fn,
        server_optimizer_fn=server_optimizer_fn,
        aggregation_process=encoded_mean_process,
        broadcast_process=encoded_broadcast_process)

    # Log hyperparameters to CSV
    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    results_dir = os.path.join(FLAGS.root_output_dir, 'results',
                               FLAGS.experiment_name)
    utils_impl.create_directory_if_not_exists(results_dir)
    hparam_file = os.path.join(results_dir, 'hparams.csv')
    utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=validation_fn,
                      total_rounds=FLAGS.total_rounds,
                      experiment_name=FLAGS.experiment_name,
                      root_output_dir=FLAGS.root_output_dir,
                      rounds_per_eval=FLAGS.rounds_per_eval,
                      rounds_per_checkpoint=FLAGS.rounds_per_checkpoint,
                      rounds_per_profile=FLAGS.rounds_per_profile)
示例#12
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        client_datasets_random_seed: Optional[int] = None,
        vocab_size: Optional[int] = 10000,
        num_oov_buckets: Optional[int] = 1,
        sequence_length: Optional[int] = 20,
        max_elements_per_user: Optional[int] = 1000,
        num_validation_examples: Optional[int] = 10000,
        embedding_size: Optional[int] = 96,
        latent_size: Optional[int] = 670,
        num_layers: Optional[int] = 1,
        shared_embedding: Optional[bool] = False,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_so_nwp',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        **kwargs):
    """Runs an iterative process on the Stack Overflow next word prediction task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, a
      `client_weight_fn` and returns a `tff.templates.IterativeProcess`. The
      `model_fn` must return a `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    embedding_size: The dimension of the word embedding layer.
    latent_size: The dimension of the latent units in the recurrent layers.
    num_layers: The number of stacked recurrent layers to use.
    shared_embedding: Boolean indicating whether to tie input and output
      embeddings.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=vocab_size,
        num_oov_buckets=num_oov_buckets,
        embedding_size=embedding_size,
        latent_size=latent_size,
        num_layers=num_layers,
        shared_embedding=shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_word_prediction.get_special_tokens(
        vocab_size, num_oov_buckets)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
        ]

    train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

    # TODO(b/161914546): consider moving evaluation to use
    # `tff.learning.build_federated_evaluation` to get metrics over client
    # distributions, as well as the example weight means from this centralized
    # evaluation.
    _, validation_dataset, test_dataset = stackoverflow_word_prediction.get_centralized_datasets(
        vocab_size=vocab_size,
        max_sequence_length=sequence_length,
        num_validation_examples=num_validation_examples,
        num_oov_buckets=num_oov_buckets)

    train_dataset_preprocess_comp = stackoverflow_word_prediction.create_preprocess_fn(
        vocab=stackoverflow_word_prediction.create_vocab(vocab_size),
        num_oov_buckets=num_oov_buckets,
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_sequence_length=sequence_length,
        max_elements_per_client=max_elements_per_user)

    input_spec = train_dataset_preprocess_comp.type_signature.result.element

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    def client_weight_fn(local_outputs):
        # Num_tokens is a tensor with type int64[1], to use as a weight need
        # a float32 scalar.
        return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    iterative_process = iterative_process_builder(
        tff_model_fn, client_weight_fn=client_weight_fn)

    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_dataset_preprocess_comp, iterative_process)

    training_process.get_model_weights = iterative_process.get_model_weights

    client_datasets_fn = training_utils.build_client_datasets_fn(
        dataset=train_clientdata,
        clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

    test_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=validation_fn,
                      test_fn=test_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
示例#13
0
def configure_training(task_spec: training_specs.TaskSpec,
                       sequence_length: int = 80) -> training_specs.RunnerSpec:
    """Configures training for the Shakespeare next-character prediction task.

  This method will load and pre-process datasets and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process compatible with `federated_research.utils.training_loop`.

  Args:
    task_spec: A `TaskSpec` class for creating federated training tasks.
    sequence_length: An int specifying the length of the character sequences
      used for prediction.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """

    shakespeare_train, _ = tff.simulation.datasets.shakespeare.load_data()
    _, shakespeare_test = shakespeare_dataset.get_centralized_datasets(
        sequence_length=sequence_length)

    train_preprocess_fn = shakespeare_dataset.create_preprocess_fn(
        num_epochs=task_spec.client_epochs_per_round,
        batch_size=task_spec.client_batch_size,
        sequence_length=sequence_length)
    input_spec = train_preprocess_fn.type_signature.result.element

    model_builder = functools.partial(create_shakespeare_model,
                                      sequence_length=sequence_length)
    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    iterative_process = task_spec.iterative_process_builder(tff_model_fn)

    if hasattr(shakespeare_train, 'dataset_computation'):

        @tff.tf_computation(tf.string)
        def build_train_dataset_from_client_id(client_id):
            client_dataset = shakespeare_train.dataset_computation(client_id)
            return train_preprocess_fn(client_dataset)

        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            build_train_dataset_from_client_id, iterative_process)
        client_ids_fn = training_utils.build_sample_fn(
            shakespeare_train.client_ids,
            size=task_spec.clients_per_round,
            replace=False,
            random_seed=task_spec.client_datasets_random_seed)
        # We convert the output to a list (instead of an np.ndarray) so that it can
        # be used as input to the iterative process.
        client_sampling_fn = lambda x: list(client_ids_fn(x))

    else:
        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            train_preprocess_fn, iterative_process)
        client_sampling_fn = training_utils.build_client_datasets_fn(
            dataset=shakespeare_train,
            clients_per_round=task_spec.clients_per_round,
            random_seed=task_spec.client_datasets_random_seed)

    training_process.get_model_weights = iterative_process.get_model_weights

    test_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=shakespeare_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: test_fn(model_weights)

    return training_specs.RunnerSpec(iterative_process=training_process,
                                     client_datasets_fn=client_sampling_fn,
                                     validation_fn=validation_fn,
                                     test_fn=test_fn)
示例#14
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError('Expected no command-line arguments, '
                             'got: {}'.format(argv))

    emnist_train, emnist_test = emnist_dataset.get_emnist_datasets(
        FLAGS.client_batch_size,
        FLAGS.client_epochs_per_round,
        only_digits=False)

    if FLAGS.model == 'cnn':
        model_builder = functools.partial(
            emnist_models.create_conv_dropout_model, only_digits=False)
    elif FLAGS.model == '2nn':
        model_builder = functools.partial(
            emnist_models.create_two_hidden_layer_model, only_digits=False)
    else:
        raise ValueError('Cannot handle model flag [{!s}].'.format(
            FLAGS.model))

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    if FLAGS.uniform_weighting:

        def client_weight_fn(local_outputs):
            del local_outputs
            return 1.0

    else:
        client_weight_fn = None  #  Defaults to the number of examples per client.

    def model_fn():
        return tff.learning.from_keras_model(
            model_builder(),
            loss_builder(),
            input_spec=emnist_test.element_spec,
            metrics=metrics_builder())

    if FLAGS.noise_multiplier is not None:
        if not FLAGS.uniform_weighting:
            raise ValueError(
                'Differential privacy is only implemented for uniform weighting.'
            )

        dp_query = tff.utils.build_dp_query(
            clip=FLAGS.clip,
            noise_multiplier=FLAGS.noise_multiplier,
            expected_total_weight=FLAGS.clients_per_round,
            adaptive_clip_learning_rate=FLAGS.adaptive_clip_learning_rate,
            target_unclipped_quantile=FLAGS.target_unclipped_quantile,
            clipped_count_budget_allocation=FLAGS.
            clipped_count_budget_allocation,
            expected_clients_per_round=FLAGS.clients_per_round,
            per_vector_clipping=FLAGS.per_vector_clipping,
            model=model_fn())

        weights_type = tff.learning.framework.weights_type_from_model(model_fn)
        aggregation_process = tff.utils.build_dp_aggregate_process(
            weights_type.trainable, dp_query)
    else:
        aggregation_process = None

    server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'server')
    client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'client')
    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=model_fn,
        server_optimizer_fn=server_optimizer_fn,
        client_weight_fn=client_weight_fn,
        client_optimizer_fn=client_optimizer_fn,
        aggregation_process=aggregation_process)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        emnist_train, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      hparam_dict=hparam_dict,
                      **training_loop_dict)
示例#15
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        schedule: Optional[str] = 'none',
        beta: Optional[float] = 0.,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        model: Optional[str] = 'cnn',
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_synthetic',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        alpha: Optional[float] = 0.,
        beta_data: Optional[float] = 0.,
        iid: Optional[int] = 0,
        num_users: Optional[int] = 100,
        **kwargs):
    """Runs an iterative process on the EMNIST character recognition task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    model: A string specifying the model used for character recognition.
      Can be one of `cnn` and `2nn`, corresponding to a CNN model and a densely
      connected 2-layer model (respectively).
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """
    logging.info(f' DATA PARAMS: ')
    logging.info(f'             Num Users: {num_users}')
    logging.info(f'             alpha: {alpha}')
    logging.info(f'             beta: {beta_data}')
    logging.info(f'             iid: {iid}')
    train_data, test_data, federated_test = synthetic_dataset.generate_federated_softmax_data(
        batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        test_batch_size=100,
        alpha=alpha,
        beta=beta_data,
        iid=iid,
        num_users=num_users)

    input_spec = train_data.create_tf_dataset_for_client(
        train_data.client_ids[0]).element_spec

    model_builder = functools.partial(create_logistic_regression_model)

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=test_data,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)
    test_fn = training_utils.build_unweighted_test_fn(
        federated_eval_dataset=federated_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())
    try:
        var = kwargs['hparam_dict']['var_q_clients']
        print(f'Variance: {var}')
        q_client = np.load(
            f'/home/monica/AVAIL_VECTORS/q_client_{var}_synthetic.npy')
    #if q_client is None:
    #logging.info('Could not load q_client - initializing random availabilities')
    #q_client=None
    except:
        logging.info(
            'Could not load q_client - initializing random availabilities')
        q_client = None

    if schedule == 'none':
        client_datasets_fn = training_utils.build_client_datasets_fn(
            train_dataset=train_data,
            train_clients_per_round=clients_per_round,
            random_seed=client_datasets_random_seed,
            min_clients=kwargs['hparam_dict']['min_clients'],
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            use_p=True,
            q_client=q_client,
        )
        training_loop.run(iterative_process=training_process,
                          client_datasets_fn=client_datasets_fn,
                          validation_fn=evaluate_fn,
                          test_fn=test_fn,
                          total_rounds=total_rounds,
                          experiment_name=experiment_name,
                          root_output_dir=root_output_dir,
                          **kwargs)
    elif schedule == 'loss':
        if 'loss_pool_size' in kwargs['hparam_dict'] and kwargs['hparam_dict'][
                'loss_pool_size'] is not None:
            loss_pool_size = kwargs['hparam_dict']['loss_pool_size']
            logging.info(f'Loss pool size: {loss_pool_size}')

            client_datasets_fn = training_utils.build_client_datasets_fn(
                train_dataset=train_data,
                train_clients_per_round=loss_pool_size,
                random_seed=client_datasets_random_seed,
                min_clients=kwargs['hparam_dict']['min_clients'],
                var_q_clients=kwargs['hparam_dict']['var_q_clients'],
                f_mult=kwargs['hparam_dict']['f_mult'],
                f_intercept=kwargs['hparam_dict']['f_intercept'],
                sine_wave=kwargs['hparam_dict']['sine_wave'],
                use_p=True,
                q_client=q_client)
            training_loop_loss.run(iterative_process=training_process,
                                   client_datasets_fn=client_datasets_fn,
                                   validation_fn=evaluate_fn,
                                   test_fn=test_fn,
                                   total_rounds=total_rounds,
                                   total_clients=loss_pool_size,
                                   experiment_name=experiment_name,
                                   root_output_dir=root_output_dir,
                                   **kwargs)
        else:
            raise ValueError('Loss pool size not specified')
    else:
        init_p = kwargs['hparam_dict']['initialize_p']
        logging.info(f'Initializing as p = {init_p}')
        client_datasets_fn = training_utils.build_availability_client_datasets_fn(
            train_dataset=train_data,
            train_clients_per_round=clients_per_round,
            beta=beta,
            min_clients=kwargs['hparam_dict']['min_clients'],
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            q_client=q_client,
            initialize_p=init_p,
        )
        training_loop_importance.run(iterative_process=training_process,
                                     client_datasets_fn=client_datasets_fn,
                                     validation_fn=evaluate_fn,
                                     test_fn=test_fn,
                                     total_rounds=total_rounds,
                                     experiment_name=experiment_name,
                                     root_output_dir=root_output_dir,
                                     **kwargs)
示例#16
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError('Expected no command-line arguments, '
                             'got: {}'.format(argv))
    tff.backends.native.set_local_execution_context(max_fanout=10)

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=FLAGS.vocab_size,
        embedding_size=FLAGS.embedding_size,
        latent_size=FLAGS.latent_size,
        num_layers=FLAGS.num_layers,
        shared_embedding=FLAGS.shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_word_prediction.get_special_tokens(
        FLAGS.vocab_size)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token]),
        ]

    train_dataset, _ = stackoverflow_word_prediction.get_federated_datasets(
        vocab_size=FLAGS.vocab_size,
        train_client_batch_size=FLAGS.client_batch_size,
        train_client_epochs_per_round=FLAGS.client_epochs_per_round,
        max_sequence_length=FLAGS.sequence_length,
        max_elements_per_train_client=FLAGS.max_elements_per_user)
    _, validation_dataset, test_dataset = stackoverflow_word_prediction.get_centralized_datasets(
        vocab_size=FLAGS.vocab_size,
        max_sequence_length=FLAGS.sequence_length,
        num_validation_examples=FLAGS.num_validation_examples)

    if FLAGS.uniform_weighting:
        client_weighting = tff.learning.ClientWeighting.UNIFORM
    else:
        client_weighting = tff.learning.ClientWeighting.NUM_EXAMPLES

    def model_fn():
        return tff.learning.from_keras_model(
            model_builder(),
            loss_builder(),
            input_spec=validation_dataset.element_spec,
            metrics=metrics_builder())

    if FLAGS.noise_multiplier is not None:
        if not FLAGS.uniform_weighting:
            raise ValueError(
                'Differential privacy is only implemented for uniform weighting.'
            )
        if FLAGS.noise_multiplier <= 0:
            raise ValueError(
                'noise_multiplier must be positive if DP is enabled.')
        if FLAGS.clip is None or FLAGS.clip <= 0:
            raise ValueError('clip must be positive if DP is enabled.')

        if not FLAGS.adaptive_clip_learning_rate:
            aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_fixed(
                noise_multiplier=FLAGS.noise_multiplier,
                clients_per_round=FLAGS.clients_per_round,
                clip=FLAGS.clip)
        else:
            if FLAGS.adaptive_clip_learning_rate <= 0:
                raise ValueError(
                    'adaptive_clip_learning_rate must be positive if '
                    'adaptive clipping is enabled.')
            aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_adaptive(
                noise_multiplier=FLAGS.noise_multiplier,
                clients_per_round=FLAGS.clients_per_round,
                initial_l2_norm_clip=FLAGS.clip,
                target_unclipped_quantile=FLAGS.target_unclipped_quantile,
                learning_rate=FLAGS.adaptive_clip_learning_rate)
    else:
        if FLAGS.uniform_weighting:
            aggregation_factory = tff.aggregators.UnweightedMeanFactory()
        else:
            aggregation_factory = tff.aggregators.MeanFactory()

    server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'server')
    client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'client')

    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=model_fn,
        server_optimizer_fn=server_optimizer_fn,
        client_weighting=client_weighting,
        client_optimizer_fn=client_optimizer_fn,
        model_update_aggregation_factory=aggregation_factory)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)
    validation_fn = lambda state, round_num: evaluate_fn(state.model)

    evaluate_test_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)
    test_fn = lambda state: evaluate_test_fn(state.model)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    # Log hyperparameters to CSV
    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    results_dir = os.path.join(FLAGS.root_output_dir, 'results',
                               FLAGS.experiment_name)
    utils_impl.create_directory_if_not_exists(results_dir)
    hparam_file = os.path.join(results_dir, 'hparams.csv')
    utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=validation_fn,
                      test_fn=test_fn,
                      total_rounds=FLAGS.total_rounds,
                      experiment_name=FLAGS.experiment_name,
                      root_output_dir=FLAGS.root_output_dir,
                      rounds_per_eval=FLAGS.rounds_per_eval,
                      rounds_per_checkpoint=FLAGS.rounds_per_checkpoint)
def configure_training(
        task_spec: training_specs.TaskSpec,
        crop_size: int = 24,
        distort_train_images: bool = True) -> training_specs.RunnerSpec:
    """Configures training for the CIFAR-100 classification task.

  This method will load and pre-process datasets and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process compatible with `federated_research.utils.training_loop`.

  Args:
    task_spec: A `TaskSpec` class for creating federated training tasks.
    crop_size: An optional integer representing the resulting size of input
      images after preprocessing.
    distort_train_images: A boolean indicating whether to distort training
      images during preprocessing via random crops, as opposed to simply
      resizing the image.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """
    crop_shape = (crop_size, crop_size, 3)

    cifar_train, _ = tff.simulation.datasets.cifar100.load_data()
    _, cifar_test = cifar100_dataset.get_centralized_datasets(
        train_batch_size=task_spec.client_batch_size, crop_shape=crop_shape)

    train_preprocess_fn = cifar100_dataset.create_preprocess_fn(
        num_epochs=task_spec.client_epochs_per_round,
        batch_size=task_spec.client_batch_size,
        crop_shape=crop_shape,
        distort_image=distort_train_images)
    input_spec = train_preprocess_fn.type_signature.result.element

    model_builder = functools.partial(resnet_models.create_resnet18,
                                      input_shape=crop_shape,
                                      num_classes=NUM_CLASSES)

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    iterative_process = task_spec.iterative_process_builder(tff_model_fn)

    if hasattr(cifar_train, 'dataset_computation'):

        @tff.tf_computation(tf.string)
        def build_train_dataset_from_client_id(client_id):
            client_dataset = cifar_train.dataset_computation(client_id)
            return train_preprocess_fn(client_dataset)

        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            build_train_dataset_from_client_id, iterative_process)
        client_ids_fn = training_utils.build_sample_fn(
            cifar_train.client_ids,
            size=task_spec.clients_per_round,
            replace=False,
            random_seed=task_spec.client_datasets_random_seed)
        # We convert the output to a list (instead of an np.ndarray) so that it can
        # be used as input to the iterative process.
        client_sampling_fn = lambda x: list(client_ids_fn(x))

    else:
        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            train_preprocess_fn, iterative_process)
        client_sampling_fn = training_utils.build_client_datasets_fn(
            dataset=cifar_train,
            clients_per_round=task_spec.clients_per_round,
            random_seed=task_spec.client_datasets_random_seed)

    training_process.get_model_weights = iterative_process.get_model_weights

    test_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=cifar_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: test_fn(model_weights)

    return training_specs.RunnerSpec(iterative_process=training_process,
                                     client_datasets_fn=client_sampling_fn,
                                     validation_fn=validation_fn,
                                     test_fn=test_fn)
示例#18
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        client_datasets_random_seed: Optional[int] = None,
        crop_size: Optional[int] = 24,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_cifar10',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        **kwargs):
    """Runs an iterative process on the CIFAR-10 classification task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.
  We assume that the iterative process has the following functional type
  signatures:
    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.
  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    crop_size: An optional integer representing the resulting size of input
      images after preprocessing.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    **kwargs: Additional arguments configuring the training loop. For details on
      supported arguments, see `federated_research/utils/training_utils.py`.
  """

    crop_shape = (crop_size, crop_size, 3)

    cifar_train, _ = cifar10_dataset.get_federated_datasets(
        train_client_epochs_per_round=client_epochs_per_round,
        train_client_batch_size=client_batch_size,
        crop_shape=crop_shape)

    _, cifar_test = cifar10_dataset.get_centralized_datasets(
        crop_shape=crop_shape)

    input_spec = cifar_train.create_tf_dataset_for_client(
        cifar_train.client_ids[0]).element_spec

    model_builder = functools.partial(resnet_models.create_resnet18,
                                      input_shape=crop_shape,
                                      num_classes=NUM_CLASSES)

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        dataset=cifar_train,
        clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    test_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=cifar_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: test_fn(model_weights)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      train_client_datasets_fn=client_datasets_fn,
                      evaluation_fn=validation_fn,
                      test_fn=test_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
示例#19
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        sequence_length: Optional[int] = 80,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_shakespeare',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on a Shakespeare next character prediction task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      a `client_weight_fn`, and returns a `tff.templates.IterativeProcess`. The
      `model_fn` must return a `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    sequence_length: An int specifying the length of the character sequences
      used for prediction.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    train_clientdata = shakespeare_dataset.construct_character_level_datasets(
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        sequence_length=sequence_length,
        max_batches_per_client=max_batches_per_client)

    _, test_dataset = shakespeare_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        max_test_batches=max_eval_batches,
        sequence_length=sequence_length)

    model_builder = functools.partial(create_shakespeare_model,
                                      sequence_length=sequence_length)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    input_spec = train_clientdata.create_tf_dataset_for_client(
        train_clientdata.client_ids[0]).element_spec

    def client_weight_fn(local_outputs):
        # Num_tokens is a tensor with type int64[1], to use as a weight need
        # a float32 scalar.
        return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(
        tff_model_fn, client_weight_fn=client_weight_fn)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset=train_clientdata,
        train_clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=test_dataset,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=evaluate_fn,
                      total_rounds=total_rounds,
                      total_clients=clients_per_round,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
示例#20
0
def run_federated(
    iterative_process_builder: Callable[..., tff.templates.IterativeProcess],
    client_epochs_per_round: int,
    client_batch_size: int,
    clients_per_round: int,
    client_datasets_random_seed: Optional[int] = None,
    vocab_tokens_size: Optional[int] = 10000,
    vocab_tags_size: Optional[int] = 500,
    max_elements_per_user: Optional[int] = 1000,
    num_validation_examples: Optional[int] = 10000,
    total_rounds: Optional[int] = 1500,
    experiment_name: Optional[str] = 'federated_so_lr',
    root_output_dir: Optional[str] = '/tmp/fed_opt',
    max_eval_batches: Optional[int] = None,
    **kwargs):
  """Runs an iterative process on the Stack Overflow logistic regression task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    vocab_tokens_size: Integer dictating the number of most frequent words to
      use in the vocabulary.
    vocab_tags_size: Integer dictating the number of most frequent tags to use
      in the label creation.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

  stackoverflow_train, _ = stackoverflow_tag_prediction.get_federated_datasets(
      word_vocab_size=vocab_tokens_size,
      tag_vocab_size=vocab_tags_size,
      train_client_batch_size=client_batch_size,
      train_client_epochs_per_round=client_epochs_per_round,
      max_elements_per_train_client=max_elements_per_user)

  _, stackoverflow_validation, stackoverflow_test = stackoverflow_tag_prediction.get_centralized_datasets(
      train_batch_size=client_batch_size,
      word_vocab_size=vocab_tokens_size,
      tag_vocab_size=vocab_tags_size,
      num_validation_examples=num_validation_examples)

  if max_eval_batches and max_eval_batches >= 1:
    stackoverflow_validation = stackoverflow_validation.take(max_eval_batches)
    stackoverflow_test = stackoverflow_test.take(max_eval_batches)

  input_spec = stackoverflow_train.create_tf_dataset_for_client(
      stackoverflow_train.client_ids[0]).element_spec

  model_builder = functools.partial(
      stackoverflow_lr_models.create_logistic_model,
      vocab_tokens_size=vocab_tokens_size,
      vocab_tags_size=vocab_tags_size)

  loss_builder = functools.partial(
      tf.keras.losses.BinaryCrossentropy,
      from_logits=False,
      reduction=tf.keras.losses.Reduction.SUM)

  def tff_model_fn() -> tff.learning.Model:
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  training_process = iterative_process_builder(tff_model_fn)

  client_datasets_fn = training_utils.build_client_datasets_fn(
      dataset=stackoverflow_train,
      clients_per_round=clients_per_round,
      random_seed=client_datasets_random_seed)

  evaluate_fn = training_utils.build_centralized_evaluate_fn(
      model_builder=model_builder,
      eval_dataset=stackoverflow_validation,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  test_fn = training_utils.build_centralized_evaluate_fn(
      model_builder=model_builder,
      # Use both val and test for symmetry with other experiments, which
      # evaluate on the entire test set.
      eval_dataset=stackoverflow_validation.concatenate(stackoverflow_test),
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  training_loop.run(
      iterative_process=training_process,
      client_datasets_fn=client_datasets_fn,
      validation_fn=evaluate_fn,
      test_fn=test_fn,
      total_rounds=total_rounds,
      experiment_name=experiment_name,
      root_output_dir=root_output_dir,
      **kwargs)
示例#21
0
def configure_training(
    task_spec: training_specs.TaskSpec) -> training_specs.RunnerSpec:
  """Configures training for the EMNIST autoencoder task.

  This method will load and pre-process datasets and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process compatible with `federated_research.utils.training_loop`.

  Args:
    task_spec: A `TaskSpec` class for creating federated training tasks.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """

  emnist_task = 'autoencoder'
  emnist_train, _ = tff.simulation.datasets.emnist.load_data(only_digits=False)
  _, emnist_test = emnist_dataset.get_centralized_datasets(
      only_digits=False, emnist_task=emnist_task)

  train_preprocess_fn = emnist_dataset.create_preprocess_fn(
      num_epochs=task_spec.client_epochs_per_round,
      batch_size=task_spec.client_batch_size,
      emnist_task=emnist_task)

  input_spec = train_preprocess_fn.type_signature.result.element

  model_builder = emnist_ae_models.create_autoencoder_model
  loss_builder = functools.partial(
      tf.keras.losses.MeanSquaredError, reduction=tf.keras.losses.Reduction.SUM)
  metrics_builder = lambda: [tf.keras.metrics.MeanSquaredError()]

  def tff_model_fn() -> tff.learning.Model:
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  iterative_process = task_spec.iterative_process_builder(tff_model_fn)

  if hasattr(emnist_train, 'dataset_computation'):

    @tff.tf_computation(tf.string)
    def build_train_dataset_from_client_id(client_id):
      client_dataset = emnist_train.dataset_computation(client_id)
      return train_preprocess_fn(client_dataset)

    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        build_train_dataset_from_client_id, iterative_process)
    client_ids_fn = training_utils.build_sample_fn(
        emnist_train.client_ids,
        size=task_spec.clients_per_round,
        replace=False,
        random_seed=task_spec.sampling_random_seed)
    # We convert the output to a list (instead of an np.ndarray) so that it can
    # be used as input to the iterative process.
    client_sampling_fn = lambda x: list(client_ids_fn(x))

  else:
    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_preprocess_fn, iterative_process)
    client_sampling_fn = training_utils.build_client_datasets_fn(
        dataset=emnist_train,
        clients_per_round=task_spec.clients_per_round,
        random_seed=task_spec.sampling_random_seed)

  training_process.get_model_weights = iterative_process.get_model_weights

  test_fn = training_utils.build_centralized_evaluate_fn(
      eval_dataset=emnist_test,
      model_builder=model_builder,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  validation_fn = lambda model_weights, round_num: test_fn(model_weights)

  return training_specs.RunnerSpec(
      iterative_process=training_process,
      client_datasets_fn=client_sampling_fn,
      validation_fn=validation_fn,
      test_fn=test_fn)
示例#22
0
def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Expected no command-line arguments, '
                         'got: {}'.format(argv))

  emnist_train, _ = emnist_dataset.get_federated_datasets(
      train_client_batch_size=FLAGS.client_batch_size,
      train_client_epochs_per_round=FLAGS.client_epochs_per_round,
      only_digits=False)

  _, emnist_test = emnist_dataset.get_centralized_datasets()

  if FLAGS.model == 'cnn':
    model_builder = functools.partial(
        emnist_models.create_conv_dropout_model, only_digits=False)
  elif FLAGS.model == '2nn':
    model_builder = functools.partial(
        emnist_models.create_two_hidden_layer_model, only_digits=False)
  else:
    raise ValueError('Cannot handle model flag [{!s}].'.format(FLAGS.model))

  loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
  metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

  if FLAGS.uniform_weighting:
    client_weighting = tff.learning.ClientWeighting.UNIFORM
  else:
    client_weighting = tff.learning.ClientWeighting.NUM_EXAMPLES

  def model_fn():
    return tff.learning.from_keras_model(
        model_builder(),
        loss_builder(),
        input_spec=emnist_test.element_spec,
        metrics=metrics_builder())

  if FLAGS.noise_multiplier is not None:
    if not FLAGS.uniform_weighting:
      raise ValueError(
          'Differential privacy is only implemented for uniform weighting.')
    if FLAGS.noise_multiplier <= 0:
      raise ValueError('noise_multiplier must be positive if DP is enabled.')
    if FLAGS.clip is None or FLAGS.clip <= 0:
      raise ValueError('clip must be positive if DP is enabled.')

    if not FLAGS.adaptive_clip_learning_rate:
      aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_fixed(
          noise_multiplier=FLAGS.noise_multiplier,
          clients_per_round=FLAGS.clients_per_round,
          clip=FLAGS.clip)
    else:
      if FLAGS.adaptive_clip_learning_rate <= 0:
        raise ValueError('adaptive_clip_learning_rate must be positive if '
                         'adaptive clipping is enabled.')
      aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_adaptive(
          noise_multiplier=FLAGS.noise_multiplier,
          clients_per_round=FLAGS.clients_per_round,
          initial_l2_norm_clip=FLAGS.clip,
          target_unclipped_quantile=FLAGS.target_unclipped_quantile,
          learning_rate=FLAGS.adaptive_clip_learning_rate)
  else:
    if FLAGS.uniform_weighting:
      aggregation_factory = tff.aggregators.UnweightedMeanFactory()
    else:
      aggregation_factory = tff.aggregators.MeanFactory()

  server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('server')
  client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('client')
  iterative_process = tff.learning.build_federated_averaging_process(
      model_fn=model_fn,
      server_optimizer_fn=server_optimizer_fn,
      client_weighting=client_weighting,
      client_optimizer_fn=client_optimizer_fn,
      model_update_aggregation_factory=aggregation_factory)

  client_datasets_fn = training_utils.build_client_datasets_fn(
      emnist_train, FLAGS.clients_per_round)

  evaluate_fn = training_utils.build_centralized_evaluate_fn(
      eval_dataset=emnist_test,
      model_builder=model_builder,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)
  validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  # Log hyperparameters to CSV
  hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
  results_dir = os.path.join(FLAGS.root_output_dir, 'results',
                             FLAGS.experiment_name)
  utils_impl.create_directory_if_not_exists(results_dir)
  hparam_file = os.path.join(results_dir, 'hparams.csv')
  utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file)

  training_loop.run(
      iterative_process=iterative_process,
      client_datasets_fn=client_datasets_fn,
      validation_fn=validation_fn,
      total_rounds=FLAGS.total_rounds,
      experiment_name=FLAGS.experiment_name,
      root_output_dir=FLAGS.root_output_dir,
      rounds_per_eval=FLAGS.rounds_per_eval,
      rounds_per_checkpoint=FLAGS.rounds_per_checkpoint,
      rounds_per_profile=FLAGS.rounds_per_profile)
示例#23
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_emnist_ae',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on the EMNIST autoencoder task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    emnist_train, _ = emnist_ae_dataset.get_emnist_datasets(
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_batches_per_client=max_batches_per_client,
        only_digits=False)

    _, emnist_test = emnist_ae_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        max_test_batches=max_eval_batches,
        only_digits=False)

    input_spec = emnist_train.create_tf_dataset_for_client(
        emnist_train.client_ids[0]).element_spec

    model_builder = emnist_ae_models.create_autoencoder_model

    loss_builder = functools.partial(tf.keras.losses.MeanSquaredError,
                                     reduction=tf.keras.losses.Reduction.SUM)
    metrics_builder = lambda: [tf.keras.metrics.MeanSquaredError()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset=emnist_train,
        train_clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=evaluate_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
示例#24
0
def configure_training(
        task_spec: training_specs.TaskSpec,
        vocab_size: int = 10000,
        num_oov_buckets: int = 1,
        sequence_length: int = 20,
        max_elements_per_user: int = 1000,
        num_validation_examples: int = 10000,
        embedding_size: int = 96,
        latent_size: int = 670,
        num_layers: int = 1,
        shared_embedding: bool = False) -> training_specs.RunnerSpec:
    """Configures training for Stack Overflow next-word prediction.

  This method will load and pre-process datasets and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process compatible with `federated_research.utils.training_loop`.

  Args:
    task_spec: A `TaskSpec` class for creating federated training tasks.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    embedding_size: The dimension of the word embedding layer.
    latent_size: The dimension of the latent units in the recurrent layers.
    num_layers: The number of stacked recurrent layers to use.
    shared_embedding: Boolean indicating whether to tie input and output
      embeddings.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=vocab_size,
        num_oov_buckets=num_oov_buckets,
        embedding_size=embedding_size,
        latent_size=latent_size,
        num_layers=num_layers,
        shared_embedding=shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_word_prediction.get_special_tokens(
        vocab_size, num_oov_buckets)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
        ]

    train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

    # TODO(b/161914546): consider moving evaluation to use
    # `tff.learning.build_federated_evaluation` to get metrics over client
    # distributions, as well as the example weight means from this centralized
    # evaluation.
    _, validation_dataset, test_dataset = stackoverflow_word_prediction.get_centralized_datasets(
        vocab_size=vocab_size,
        max_sequence_length=sequence_length,
        num_validation_examples=num_validation_examples,
        num_oov_buckets=num_oov_buckets)

    train_dataset_preprocess_comp = stackoverflow_word_prediction.create_preprocess_fn(
        vocab=stackoverflow_word_prediction.create_vocab(vocab_size),
        num_oov_buckets=num_oov_buckets,
        client_batch_size=task_spec.client_batch_size,
        client_epochs_per_round=task_spec.client_epochs_per_round,
        max_sequence_length=sequence_length,
        max_elements_per_client=max_elements_per_user)

    input_spec = train_dataset_preprocess_comp.type_signature.result.element

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    iterative_process = task_spec.iterative_process_builder(tff_model_fn)

    if hasattr(train_clientdata, 'dataset_computation'):

        @tff.tf_computation(tf.string)
        def train_dataset_computation(client_id):
            client_train_data = train_clientdata.dataset_computation(client_id)
            return train_dataset_preprocess_comp(client_train_data)

        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            train_dataset_computation, iterative_process)
        client_ids_fn = training_utils.build_sample_fn(
            train_clientdata.client_ids,
            size=task_spec.clients_per_round,
            replace=False,
            random_seed=task_spec.client_datasets_random_seed)
        # We convert the output to a list (instead of an np.ndarray) so that it can
        # be used as input to the iterative process.
        client_sampling_fn = lambda x: list(client_ids_fn(x))
    else:
        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            train_dataset_preprocess_comp, iterative_process)
        client_sampling_fn = training_utils.build_client_datasets_fn(
            dataset=train_clientdata,
            clients_per_round=task_spec.clients_per_round,
            random_seed=task_spec.client_datasets_random_seed)

    training_process.get_model_weights = iterative_process.get_model_weights

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

    test_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    return training_specs.RunnerSpec(iterative_process=training_process,
                                     client_datasets_fn=client_sampling_fn,
                                     validation_fn=validation_fn,
                                     test_fn=test_fn)
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        schedule: Optional[str] = 'none',
        beta: Optional[float] = 0.,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        crop_size: Optional[int] = 24,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_cifar100',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on the CIFAR-100 classification task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    crop_size: An optional integer representing the resulting size of input
      images after preprocessing.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    crop_shape = (crop_size, crop_size, 3)

    cifar_train, _, fed_test_data = cifar100_dataset.get_federated_cifar100(
        client_epochs_per_round=client_epochs_per_round,
        train_batch_size=client_batch_size,
        crop_shape=crop_shape,
        max_batches_per_client=max_batches_per_client)

    _, cifar_test = cifar100_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        max_test_batches=max_eval_batches,
        crop_shape=crop_shape)

    input_spec = cifar_train.create_tf_dataset_for_client(
        cifar_train.client_ids[0]).element_spec

    model_builder = functools.partial(resnet_models.create_resnet18,
                                      input_shape=crop_shape,
                                      num_classes=NUM_CLASSES)

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=cifar_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    test_fn = training_utils.build_unweighted_test_fn(
        federated_eval_dataset=fed_test_data,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())
    try:
        var = kwargs['hparam_dict']['var_q_clients']
        q_client = np.load(
            f'/home/monica/AVAIL_VECTORS/q_client_{var}_cifar.npy')
    except:
        logging.info(
            'Could not load q_client - initializing random availabilities')
        q_client = None

    if schedule == 'none':
        client_datasets_fn = training_utils.build_client_datasets_fn(
            train_dataset=cifar_train,
            train_clients_per_round=clients_per_round,
            random_seed=client_datasets_random_seed,
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            use_p=True,
            q_client=q_client,
        )

        training_loop.run(iterative_process=training_process,
                          client_datasets_fn=client_datasets_fn,
                          validation_fn=evaluate_fn,
                          test_fn=test_fn,
                          total_rounds=total_rounds,
                          experiment_name=experiment_name,
                          root_output_dir=root_output_dir,
                          **kwargs)
    elif schedule == 'loss':
        if 'loss_pool_size' in kwargs['hparam_dict'] and kwargs['hparam_dict'][
                'loss_pool_size'] is not None:
            loss_pool_size = kwargs['hparam_dict']['loss_pool_size']
            logging.info(f'Loss pool size: {loss_pool_size}')
            client_datasets_fn = training_utils.build_client_datasets_fn(
                train_dataset=cifar_train,
                train_clients_per_round=loss_pool_size,
                random_seed=client_datasets_random_seed,
                var_q_clients=kwargs['hparam_dict']['var_q_clients'],
                f_mult=kwargs['hparam_dict']['f_mult'],
                f_intercept=kwargs['hparam_dict']['f_intercept'],
                sine_wave=kwargs['hparam_dict']['sine_wave'],
                use_p=True,
                q_client=q_client,
            )
            training_loop_loss.run(iterative_process=training_process,
                                   client_datasets_fn=client_datasets_fn,
                                   validation_fn=evaluate_fn,
                                   test_fn=test_fn,
                                   total_rounds=total_rounds,
                                   total_clients=loss_pool_size,
                                   experiment_name=experiment_name,
                                   root_output_dir=root_output_dir,
                                   **kwargs)
        else:
            raise ValueError('Loss pool size not specified')
    else:
        client_datasets_fn = training_utils.build_availability_client_datasets_fn(
            train_dataset=cifar_train,
            train_clients_per_round=clients_per_round,
            random_seed=client_datasets_random_seed,
            beta=beta,
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            q_client=q_client,
        )
        training_loop_importance.run(iterative_process=training_process,
                                     client_datasets_fn=client_datasets_fn,
                                     validation_fn=evaluate_fn,
                                     test_fn=test_fn,
                                     total_rounds=total_rounds,
                                     experiment_name=experiment_name,
                                     root_output_dir=root_output_dir,
                                     **kwargs)
示例#26
0
def run_federated(
    iterative_process_builder: Callable[..., tff.templates.IterativeProcess],
    client_epochs_per_round: int,
    client_batch_size: int,
    clients_per_round: int,
    max_elements_per_user: int,
    total_rounds: int = 3000,
    vocab_size: int = 10000,
    num_oov_buckets: int = 1,
    sequence_length: int = 20,
    num_validation_examples: int = 10000,
    dim_embed: int = 96,
    dim_model: int = 512,
    dim_hidden: int = 2048,
    num_heads: int = 8,
    num_layers: int = 1,
    max_position_encoding: int = 1000,
    dropout: float = 0.1,
    client_datasets_random_seed: Optional[int] = None,
    experiment_name: str = 'federated_stackoverflow',
    root_output_dir: str = '/tmp/fedopt_guide',
    max_val_test_batches: Optional[int] = None,
    **kwargs) -> None:
  """Configures training for Stack Overflow next-word prediction.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research/fedopt_guide/training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, a
      `client_weight_fn` and returns a `tff.templates.IterativeProcess`. The
      `model_fn` must return a `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset. This has be to a positive value or -1 (which means that
      all elements are taken for training).
    total_rounds: The number of federated training rounds.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    num_validation_examples: The number of test examples to use for validation.
    dim_embed: An integer for the dimension of the token embeddings.
    dim_model: An integer for the dimension of features of MultiHeadAttention
      layers.
    dim_hidden: An integer for the dimension of hidden layers of the FFN.
    num_heads:  An integer for the number of attention heads.
    num_layers: An integer for the number of Transformer blocks.
    max_position_encoding: Maximum number of positions for position embeddings.
    dropout: Dropout rate.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_val_test_batches: If set to a positive integer, val and test datasets
      are capped to at most that many batches. If set to None or a nonpositive
      integer, the full datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details on
      supported arguments, see
      `federated_research/fedopt_guide/training_utils.py`.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """

  train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

  _, validation_dataset, test_dataset = stackoverflow_word_prediction.get_centralized_datasets(
      vocab_size=vocab_size,
      max_sequence_length=sequence_length,
      num_validation_examples=num_validation_examples,
      num_oov_buckets=num_oov_buckets)

  if max_val_test_batches and max_val_test_batches >= 1:
    validation_dataset = validation_dataset.take(max_val_test_batches)
    test_dataset = test_dataset.take(max_val_test_batches)

  model_builder = functools.partial(
      transformer_models.create_transformer_lm,
      vocab_size=vocab_size,
      num_oov_buckets=num_oov_buckets,
      d_embed=dim_embed,
      d_model=dim_model,
      d_hidden=dim_hidden,
      num_heads=num_heads,
      num_layers=num_layers,
      max_position_encoding=max_position_encoding,
      dropout=dropout,
      name='stackoverflow-transformer')

  loss_builder = functools.partial(
      tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

  special_tokens = stackoverflow_word_prediction.get_special_tokens(
      vocab_size, num_oov_buckets)
  pad_token = special_tokens.pad
  oov_tokens = special_tokens.oov
  eos_token = special_tokens.eos

  def metrics_builder():
    return [
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_with_oov', masked_tokens=[pad_token]),
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov', masked_tokens=[pad_token] + oov_tokens),
        # Notice BOS never appears in ground truth.
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov_or_eos',
            masked_tokens=[pad_token, eos_token] + oov_tokens),
        keras_metrics.NumBatchesCounter(),
        keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
    ]

  train_dataset_preprocess_comp = stackoverflow_word_prediction.create_preprocess_fn(
      vocab=stackoverflow_word_prediction.create_vocab(vocab_size),
      num_oov_buckets=num_oov_buckets,
      client_batch_size=client_batch_size,
      client_epochs_per_round=client_epochs_per_round,
      max_sequence_length=sequence_length,
      max_elements_per_client=max_elements_per_user)

  input_spec = train_dataset_preprocess_comp.type_signature.result.element

  def tff_model_fn() -> tff.learning.Model:
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  def client_weight_fn(local_outputs):
    # Num_tokens is a tensor with type int64[1], to use as a weight need
    # a float32 scalar.
    return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

  iterative_process = iterative_process_builder(
      tff_model_fn, client_weight_fn=client_weight_fn)

  if hasattr(train_clientdata, 'dataset_computation'):

    @tff.tf_computation(tf.string)
    def train_dataset_computation(client_id):
      client_train_data = train_clientdata.dataset_computation(client_id)
      return train_dataset_preprocess_comp(client_train_data)

    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_dataset_computation, iterative_process)
    client_ids_fn = training_utils.build_sample_fn(
        train_clientdata.client_ids,
        size=clients_per_round,
        replace=False,
        random_seed=client_datasets_random_seed)
    # We convert the output to a list (instead of an np.ndarray) so that it can
    # be used as input to the iterative process.
    client_sampling_fn = lambda x: list(client_ids_fn(x))
  else:
    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_dataset_preprocess_comp, iterative_process)
    client_sampling_fn = training_utils.build_client_datasets_fn(
        dataset=train_clientdata,
        clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

  training_process.get_model_weights = iterative_process.get_model_weights

  evaluate_fn = training_utils.build_centralized_evaluate_fn(
      model_builder=model_builder,
      eval_dataset=validation_dataset,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

  test_fn = training_utils.build_centralized_evaluate_fn(
      model_builder=model_builder,
      # Use both val and test for symmetry with other experiments, which
      # evaluate on the entire test set.
      eval_dataset=validation_dataset.concatenate(test_dataset),
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  training_loop.run(
      iterative_process=training_process,
      train_client_datasets_fn=client_sampling_fn,
      evaluation_fn=validation_fn,
      test_fn=test_fn,
      total_rounds=total_rounds,
      experiment_name=experiment_name,
      root_output_dir=root_output_dir,
      **kwargs)