示例#1
0
def trainLoop(num_epochs, batch_size, gen_lr, disc_lr, gen_train_freq,
              disc_train_freq, logger):
    # Create run directory for current training run
    os.chdir(os.path.expanduser('~') + '/Research/psig-gan/runs/')
    run_dir = str(datetime.datetime.now()).replace(
        ' ',
        '',
    ) + "--" + "disc_lr" + str(disc_lr) + " " + "gen_lr" + str(
        gen_lr) + " " + "gen_train_freq" + str(
            gen_train_freq) + " " + "disc_train_freq" + str(
                disc_train_freq) + " " + "num_epochs" + str(num_epochs)

    os.mkdir(run_dir)
    # Instantiate GAN
    gan = DCGAN(latent_shape=100,
                output_image_shape=512,
                num_gen_images=batch_size,
                gen_filter_size=6,
                discrim_filter_size=5,
                gen_num_channels=128,
                discrim_num_channels=64)
    # Load real grassweeds image data
    data_path = '/home/data/GrassClover/'
    data_batch = util.createDataBatch(data_path, batch_size, 512)

    # Execute training loop
    train(gan, data_batch, num_epochs, run_dir, gen_lr, disc_lr,
          gen_train_freq, disc_train_freq, logger)
示例#2
0
def trainLoop(num_epochs, batch_size, gen_lr, disc_lr, gen_train_freq, disc_train_freq, logger):
        # Create run directory for current training run 
        os.chdir(os.path.expanduser('~') + '/psig-gan/runs/')
        run_dir = str(datetime.datetime.now()).replace(' ','',) + "--" + "disc_lr"+ str(disc_lr) + " " + "gen_lr"+ str(gen_lr) + " " + "gen_train_freq" + str(gen_train_freq) + " " + "disc_train_freq" + str(disc_train_freq) + " "  + "num_epochs"+ str(num_epochs)

        os.mkdir(run_dir)
        # Instantiate GAN
        gan = DCGAN(latent_shape=100, output_image_shape=256, num_gen_images=batch_size, gen_filter_size=5, discrim_filter_size=5, gen_num_channels=128, discrim_num_channels=64)
        # Load real grassweeds image data 
        data_path = '/home/data/dcgan-data/'
        data_batch = util.createDataBatch(data_path,batch_size)
        # Define Comet-ML API key here for error logging
        comet_api_key = 'Gdy4QDrOmu0P01XuBI33rPuIS'
        #Define Comet Project Name
        logger = Experiment(comet_api_key, project_name="psig-gan")
        
        #Define experiment name
        logger.set_name("disc_lr"+ str(disc_lr) + " " + "gen_lr"+ str(gen_lr) + " " + "gen_train_freq"+ str(gen_train_freq) + " " + "disc_train_freq" + str(disc_train_freq) + " "  + "num_epochs"+ str(num_epochs))
        
        # Execute training loop
        train(gan, data_batch, num_epochs, run_dir, gen_lr, disc_lr, gen_train_freq, disc_train_freq, logger)
示例#3
0

if __name__ == "__main__":

    # set GPU here
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"

    # Define Comet-ML API key here for error logging
    comet_api_key = 'Gdy4QDrOmu0P01XuBI33rPuIS'

    #Define Comet Project Name
    logger = Experiment(comet_api_key, project_name="psig-gan")
        
    #Define experiment name
    logger.set_name("discrim-only training") #+ str( datetime.datetime.now().replace(' ','',)  )) 

    #define epochs and lr here
    
    num_epochs = 15
    batch_size = 64
    disc_lr = 0.01

    # Load real grassweeds image data 
    data_path = '/home/data/dcgan-data/'
    data_batch = util.createDataBatch(data_path,batch_size)

    #make gan object here 
    gan = DCGAN(latent_shape=100, output_image_shape=256, num_gen_images=batch_size, gen_filter_size=5, discrim_filter_size=5, gen_num_channels=128, discrim_num_channels=64)

    # call discrim training loop
    train_discrim(gan,disc_lr, data_batch, num_epochs, logger, batch_size)