示例#1
0
import pandas as pd
import torch
import pickle
from config import config
from utils.utils import get_device, generate_embeddings, build_annoy_index
from model.model import SentenceTransformer
from data.data import SentenceTransformerDataset
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler

device = get_device()
# device = 'cpu'

df = pd.read_csv('inputs/data.csv')
texts = df['text'].values
labels = df['label'].values

model = SentenceTransformer().to(device)

batch_dataset = SentenceTransformerDataset(text=texts, target=labels)

batch_data_loader = torch.utils.data.DataLoader(
    batch_dataset,
    sampler=SequentialSampler(batch_dataset),
    batch_size=config.BATCH_SIZE,
    num_workers=4)

print("Generating embeddings")
embeddings, texts, labels = generate_embeddings(batch_data_loader, model,
                                                device)
with open('embeddings.pkl', 'wb') as f:
    pickle.dump(embeddings, f)
示例#2
0
                        help='The name of the trainin json file to load.')
    parser.add_argument(
        '--upsample_multiplier',
        type=int,
        default=0,
        help=
        'Multiplier used to increase the amount of confounders in training data'
    )
    parser.add_argument('--note',
                        type=str,
                        default='',
                        help='Add a note that can be seen in wandb')
    args, unparsed = parser.parse_known_args()
    config = args.__dict__
    wandb.config.update(config)
    config['device'] = get_device()
    config['n_classes'] = 2 if config['loss_func'] == 'ce' else 1

    # Check all provided paths:
    if not os.path.exists(config['data_path']):
        raise ValueError("[!] ERROR: Dataset path does not exist")
    else:
        LOGGER.info("Data path checked..")
    if not os.path.exists(config['model_path']):
        LOGGER.warning(
            "Creating checkpoint path for saved models at:  {}\n".format(
                config['model_path']))
        os.makedirs(config['model_path'])
    else:
        LOGGER.info("Model save path checked..")
    if 'config' in config:
示例#3
0
def train(config):
    cfg, cfg_data, cfg_model, cfg_optim = read_config(config)

    device, n_gpu = utils.get_device()
    utils.set_seeds(cfg.seed, n_gpu)

    train_batch_size = int(cfg_optim.train_batch_size /
                           cfg_optim.gradient_accumulation_steps)

    processor = get_class(cfg.task.lower())

    tokenizer = BertTokenizer.from_pretrained(cfg.bert_model,
                                              do_lower_case=cfg.do_lower_case)

    train_examples = None
    num_train_steps = None
    if cfg.do_train:
        train_examples = processor.get_train_examples(cfg_data.data_dir)
        num_train_steps = int(
            len(train_examples) / train_batch_size /
            cfg_optim.gradient_accumulation_steps * cfg_optim.num_train_epochs)

    label_list = processor.get_labels()
    # Prepare model
    print(PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(-1))
    model = BertForSequenceClassification.from_pretrained(
        cfg.bert_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(-1),
        num_labels=len(label_list))

    model.to(device)

    # Prepare optimizer
    if cfg_optim.optimize_on_cpu:
        param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                           for n, param in model.named_parameters()]
    else:
        param_optimizer = list(model.named_parameters())

    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    t_total = num_train_steps

    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=cfg_optim.learning_rate,
                         warmup=cfg_optim.warmup_proportion,
                         t_total=t_total)

    global_step = 0
    if cfg.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      cfg_optim.max_seq_length,
                                                      tokenizer,
                                                      show_exp=False)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        train_dataloader = convert_features_to_tensors(train_features,
                                                       train_batch_size)

        model.train()
        best_score = 0
        flags = 0
        for _ in trange(int(cfg_optim.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if cfg_optim.fp16 and cfg_optim.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * cfg_optim.loss_scale
                if cfg_optim.gradient_accumulation_steps > 1:
                    loss = loss / cfg_optim.gradient_accumulation_steps
                loss.backward()

                if (step + 1) % cfg_optim.gradient_accumulation_steps == 0:
                    if cfg_optim.optimize_on_cpu:
                        if cfg_optim.fp16 and cfg_optim.loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                if param.grad is not None:
                                    param.grad.data = param.grad.data / cfg_optim.loss_scale
                        is_nan = utils.set_optimizer_params_grad(
                            param_optimizer,
                            model.named_parameters(),
                            test_nan=True)
                        if is_nan:
                            logger.info(
                                "FP16 TRAINING: Nan in gradients, reducing loss scaling"
                            )
                            cfg_optim.loss_scale = cfg_optim.loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        utils.copy_optimizer_params_to_model(
                            model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()

            f1 = evaluate(model, processor, cfg_optim, label_list, tokenizer,
                          device)
            if f1 > best_score:
                best_score = f1
                print('*f1 score = {}'.format(f1))
                flags = 0
                checkpoint = {'state_dict': model.state_dict()}
                torch.save(checkpoint, cfg_optim.model_save_pth)
            else:
                print('f1 score = {}'.format(f1))
                flags += 1
                if flags >= 6:
                    break

    model.load_state_dict(torch.load(cfg.model_save_pth)['state_dict'])
    test(model, processor, cfg_optim, label_list, tokenizer, device)
import os
import torch
from torchvision import transforms, models
from torch.utils.tensorboard import SummaryWriter
from datasets.FASDataset import FASDataset
from utils.transform import RandomGammaCorrection
from utils.utils import read_cfg, get_optimizer, get_device, build_network
from trainer.FASTrainer import FASTrainer
from models.loss import DepthLoss
from torch.optim.lr_scheduler import StepLR

cfg = read_cfg(cfg_file="config/CDCNpp_adam_lr1e-3.yaml")

device = get_device(cfg)

network = build_network(cfg)

optimizer = get_optimizer(cfg, network)

lr_scheduler = StepLR(optimizer=optimizer, step_size=30, gamma=0.1)

criterion = DepthLoss(device=device)

writer = SummaryWriter(cfg['log_dir'])

dump_input = torch.randn(
    (1, 3, cfg['model']['input_size'][0], cfg['model']['input_size'][1]))

writer.add_graph(network, dump_input)

train_transform = transforms.Compose([
    def __init__(self, n_class, arch, use_CBAM=False):
        super(ISICModel_singleview_reid, self).__init__()
        self.mode = 'singleview_reid'

        cfg = gl.get_value('cfg')
        self.cfg = cfg
        if arch == 'resnet50':

            if cfg.MODEL.USE_ADL is True:
                model_backbone = resnet50_adl(
                    pretrained=True,
                    num_classes=n_class,
                    ADL_position=cfg.MODEL.ADL_POSITION,
                    drop_rate=cfg.MODEL.ADLRATE,
                    drop_thr=cfg.MODEL.ADLTHR)
            else:
                model_backbone = models.resnet50(pretrained=True)
            #in_features =  4096
            self.backbone = (nn.Sequential(
                *list(model_backbone.children())[:-2]))
            self.backbone_lc = nn.ReLU(inplace=True)  #skip

        elif arch == 'sk_resnet50':
            model_backbone = sk_resnet50(pretrained=True)
            #in_features =  4096
            self.backbone = (nn.Sequential(
                *list(model_backbone.children())[:-2]))
            self.backbone_lc = nn.ReLU(inplace=True)  #skip

        elif arch == 'resnet50d':
            model_backbone = resnet50d(pretrained=True)
            #in_features =  4096
            self.backbone = (nn.Sequential(
                *list(model_backbone.children())[:-2]))
            self.backbone_lc = nn.ReLU(inplace=True)  #skip

        elif arch == 'sge_resnet50':
            model_backbone = sge_resnet50(pretrained=True)
            #in_features =  4096
            self.backbone = (nn.Sequential(
                *list(model_backbone.children())[:-2]))
            self.backbone_lc = nn.ReLU(inplace=True)  #skip
        elif arch == 'resnext50_32x4d':

            model_backbone = models.resnext50_32x4d(pretrained=True)
            self.backbone = (nn.Sequential(
                *list(model_backbone.children())[:-2]))
            self.backbone_lc = nn.ReLU(inplace=True)  #skip

        elif arch == 'se_resnext50':

            model_backbone = SENet(block=SEResNeXtBottleneck,
                                   layers=[3, 4, 6, 3],
                                   groups=32,
                                   reduction=16,
                                   dropout_p=None,
                                   inplanes=64,
                                   input_3x3=False,
                                   downsample_kernel_size=1,
                                   downsample_padding=0,
                                   last_stride=2)
            param_dict = torch.load(
                '../models/se_resnext50_32x4d-a260b3a4.pth')

            for i in param_dict:
                if 'classifier' in i or 'last_linear' in i:
                    continue
                model_backbone.state_dict()[i].copy_(param_dict[i])

            self.backbone = model_backbone  #(nn.Sequential(*list(model_backbone.children())[:-3]) )
            self.backbone_lc = nn.ReLU(inplace=True)  #skip

        elif arch == 'effnetb4':
            model_backbone = EfficientNet.from_pretrained('efficientnet-b4')
            self.backbone = model_backbone  #(nn.Sequential(*list(model_backbone.children())[:-3]) )
            self.backbone_lc = nn.ReLU(inplace=True)  #skip

        self.imfeat_dim = cfg.MODEL.IMG_FCS  #(4096,512)

        self.use_fc = cfg.MODEL.REID_USE_FC

        self.num_classes = n_class
        self.pdrop_lin = cfg.MODEL.REID_PDROP_LIN
        self.neck_feat = cfg.MODEL.REID_NECK_FEAT

        if self.use_fc is True:
            self.in_planes = self.imfeat_dim[1]
            self.after_backbone = nn.Sequential(
                layers.AvgPool(), nn.Dropout(p=self.pdrop_lin),
                nn.Linear(self.imfeat_dim[0] // 2, self.in_planes, bias=False))
            self.bottleneck = nn.BatchNorm1d(self.imfeat_dim[1])
            self.classifier = nn.Linear(self.in_planes,
                                        self.num_classes,
                                        bias=False)
        else:
            self.in_planes = self.imfeat_dim[0] // 2
            self.after_backbone = layers.AvgPool()
            self.bottleneck = nn.BatchNorm1d(self.in_planes)
            self.classifier = nn.Sequential(
                nn.Dropout(p=self.pdrop_lin),
                nn.Linear(self.in_planes, self.num_classes, bias=False))

        self.bottleneck.bias.requires_grad_(False)  # no shift

        self.center_feat = torch.zeros(n_class, self.in_planes)
        device = get_device(self.cfg)
        self.center_feat = self.center_feat.to(device)

        #self.head_im = nn.Sequential(self.after_backbone,self.bottleneck)

        init_cnn(self.after_backbone)
        init_cnn(self.bottleneck)
        init_cnn(self.classifier)

        self.meta_fc = nn.ReLU(inplace=True)
        self.final_conv = nn.ReLU(inplace=True)  #skip

        #if cfg.MODEL.BACKBONE_PRETRAIN_PATH is not None  and os.path.exists(cfg.MODEL.BACKBONE_PRETRAIN_PATH):
        #    self.backbone.load_state_dict(torch.load(cfg.MODEL.BACKBONE_PRETRAIN_PATH))

        if cfg.MODEL.PRETRAIN_PATH is not None and os.path.exists(
                cfg.MODEL.PRETRAIN_PATH):
            self.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
示例#6
0
def main(cfg, model_cfg):
    # Load Configuration
    cfg = configuration.params.from_json(cfg)  # Train or Eval cfg
    model_cfg = configuration.model.from_json(model_cfg)  # BERT_cfg
    set_seeds(cfg.seed)

    # Load Data & Create Criterion
    data = load_data(cfg)
    if cfg.uda_mode:
        unsup_criterion = nn.KLDivLoss(reduction='none')
        data_iter = [data.sup_data_iter(), data.unsup_data_iter()] if cfg.mode=='train' \
            else [data.sup_data_iter(), data.unsup_data_iter(), data.eval_data_iter()]  # train_eval
    else:
        data_iter = [data.sup_data_iter()]
    sup_criterion = nn.CrossEntropyLoss(reduction='none')

    # Load Model
    model = models.Classifier(model_cfg, len(data.TaskDataset.labels))

    # Create trainer
    trainer = train.Trainer(cfg, model, data_iter, optim.optim4GPU(cfg, model),
                            get_device())

    # Training
    def get_loss(model, sup_batch, unsup_batch, global_step):

        # logits -> prob(softmax) -> log_prob(log_softmax)

        # batch
        input_ids, segment_ids, input_mask, label_ids = sup_batch
        if unsup_batch:
            ori_input_ids, ori_segment_ids, ori_input_mask, \
            aug_input_ids, aug_segment_ids, aug_input_mask  = unsup_batch

            input_ids = torch.cat((input_ids, aug_input_ids), dim=0)
            segment_ids = torch.cat((segment_ids, aug_segment_ids), dim=0)
            input_mask = torch.cat((input_mask, aug_input_mask), dim=0)

        # logits
        logits = model(input_ids, segment_ids, input_mask)

        # sup loss
        sup_size = label_ids.shape[0]
        sup_loss = sup_criterion(logits[:sup_size],
                                 label_ids)  # shape : train_batch_size
        if cfg.tsa:
            tsa_thresh = get_tsa_thresh(cfg.tsa,
                                        global_step,
                                        cfg.total_steps,
                                        start=1. / logits.shape[-1],
                                        end=1)
            larger_than_threshold = torch.exp(
                -sup_loss
            ) > tsa_thresh  # prob = exp(log_prob), prob > tsa_threshold
            # larger_than_threshold = torch.sum(  F.softmax(pred[:sup_size]) * torch.eye(num_labels)[sup_label_ids]  , dim=-1) > tsa_threshold
            loss_mask = torch.ones_like(label_ids, dtype=torch.float32) * (
                1 - larger_than_threshold.type(torch.float32))
            sup_loss = torch.sum(sup_loss * loss_mask, dim=-1) / torch.max(
                torch.sum(loss_mask, dim=-1), torch_device_one())
        else:
            sup_loss = torch.mean(sup_loss)

        # unsup loss
        if unsup_batch:
            # ori
            with torch.no_grad():
                ori_logits = model(ori_input_ids, ori_segment_ids,
                                   ori_input_mask)
                ori_prob = F.softmax(ori_logits, dim=-1)  # KLdiv target
                # ori_log_prob = F.log_softmax(ori_logits, dim=-1)

                # confidence-based masking
                if cfg.uda_confidence_thresh != -1:
                    unsup_loss_mask = torch.max(
                        ori_prob, dim=-1)[0] > cfg.uda_confidence_thresh
                    unsup_loss_mask = unsup_loss_mask.type(torch.float32)
                else:
                    unsup_loss_mask = torch.ones(len(logits) - sup_size,
                                                 dtype=torch.float32)
                unsup_loss_mask = unsup_loss_mask.to(_get_device())

            # aug
            # softmax temperature controlling
            uda_softmax_temp = cfg.uda_softmax_temp if cfg.uda_softmax_temp > 0 else 1.
            aug_log_prob = F.log_softmax(logits[sup_size:] / uda_softmax_temp,
                                         dim=-1)

            # KLdiv loss
            """
                nn.KLDivLoss (kl_div)
                input : log_prob (log_softmax)
                target : prob    (softmax)
                https://pytorch.org/docs/stable/nn.html

                unsup_loss is divied by number of unsup_loss_mask
                it is different from the google UDA official
                The offical unsup_loss is diviede by total
                https://github.com/google-research/uda/blob/master/text/uda.py#L175
            """
            unsup_loss = torch.sum(unsup_criterion(aug_log_prob, ori_prob),
                                   dim=-1)
            unsup_loss = torch.sum(
                unsup_loss * unsup_loss_mask, dim=-1) / torch.max(
                    torch.sum(unsup_loss_mask, dim=-1), torch_device_one())
            final_loss = sup_loss + cfg.uda_coeff * unsup_loss

            return final_loss, sup_loss, unsup_loss
        return sup_loss, None, None

    # evaluation
    def get_acc(model, batch):
        # input_ids, segment_ids, input_mask, label_id, sentence = batch
        input_ids, segment_ids, input_mask, label_id = batch
        logits = model(input_ids, segment_ids, input_mask)
        _, label_pred = logits.max(1)

        result = (label_pred == label_id).float()
        accuracy = result.mean()
        # output_dump.logs(sentence, label_pred, label_id)    # output dump

        return accuracy, result

    if cfg.mode == 'train':
        trainer.train(get_loss, None, cfg.model_file, cfg.pretrain_file)

    if cfg.mode == 'train_eval':
        trainer.train(get_loss, get_acc, cfg.model_file, cfg.pretrain_file)

    if cfg.mode == 'eval':
        results = trainer.eval(get_acc, cfg.model_file, None)
        total_accuracy = torch.cat(results).mean().item()
        print('Accuracy :', total_accuracy)
示例#7
0
        for i in range(n_images*n_images):
            y_a = NC.G(x_A, x_B, train=False,
                            a_c=a_c_[i].to(device).unsqueeze(0),
                            a_s=a_s_[i].to(device).unsqueeze(0))
            file_path = path + '_' + str(a_s[i]) + '_' + str(a_c[i]) + ext
            save_image(normalize_tensor(y_a), file_path)
    else: # basic transition
        a = torch.linspace(start=0, end=1.0, steps=n_images)
        # y_a = torch.zeros(n_images, 3, config['img_size'], config['img_size'])
        for i in range(n_images):
            y_a = NC.G(x_A, x_B, train=False,
                        a_c=a[i].to(device).unsqueeze(0),
                        a_s=a[i].to(device).unsqueeze(0))
            file_path = path + '_' + str(a[i]) + ext
            save_image(normalize_tensor(y_a), file_path)
    
    save_image(normalize_tensor(x_A), out_dir + '/x_A' + ext)
    save_image(normalize_tensor(x_B), out_dir + '/x_B' + ext)
    print('Generated images are saved at %s' % out_dir)

    # y_a = vutils.make_grid(y_a,
    #                 nrow=n_images,
    #                 normalize=True,
    #                 scale_each=True)
    # save_image(y_a, out_path)


if __name__ == '__main__':
    args, config = options()
    device, _ = get_device(args) 
    test(args, config)
示例#8
0

def init_processes(rank, size, args, fn, port, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = str(port)

    dist.init_process_group(backend, rank=rank, world_size=size)
    fn(args)


if __name__ == "__main__":
    args = argparser.parse_args()
    size = args.world_size
    # Force CPU
    backend = 'gloo' if get_device('cpu') == 'cpu' else 'nccl'
    processes = []

    # https://stackoverflow.com/questions/3671666/sharing-a-complex-object-between-python-processes
    BaseManager.register('ExponentialMovingAvg', ExponentialMovingAvg)
    BaseManager.register('TBWrapper', TBWrapper)
    manager = BaseManager()
    manager.start()
    reward_ema = manager.ExponentialMovingAvg(args.reward_eam_factor)
    writer = manager.TBWrapper(experiment_name)

    vanilla_policy_gradient_mt = partial(vanilla_policy_gradient,
                                         reward_ema=reward_ema,
                                         writer=writer)
    for rank in range(size):
        p = Process(target=init_processes,
示例#9
0
def train(model: PlantModel,
          optimizer,
          criterion,
          lr_scheduler,
          data_loader: DataLoader,
          data_loader_test: DataLoader,
          num_epochs: int = 10,
          use_cuda: bool = True,
          epoch_save_ckpt: Union[int, list] = None,
          dir: str = None):
    """
    Method to train FasterRCNN_SaladFruit model.
    Args:
        data_loader (torch.utils.data.DataLoader): data loader to train model on
        data_loader_test (torch.utils.data.DataLoader): data loader to evaluate model on
        num_epochs (int = 10): number of epoch to train model
        use_cuda (bool = True): use cuda or not
        epoch_save_ckpt (list or int): Epoch at which you want to save the model. If -1 save only last epoch.
        dir (str = "models/): Directory where model are saved under the name "{model_name}_{date}_ep{epoch}.pth"
    """
    if epoch_save_ckpt == -1:
        epoch_save_ckpt = [num_epochs - 1]
    if not dir:
        dir = "checkpoints"
    dir = Path(dir)
    dir.mkdir(parents=True, exist_ok=True)
    # choose device
    device = get_device(use_cuda)
    print(f"Using device {device.type}")
    # define dataset
    model.to(device)
    writer = SummaryWriter("logs")
    metric_logger_train = MetricLogger(delimiter="  ")
    # writer_test = SummaryWriter("runs/test")
    # metric_logger_test = MetricLogger(delimiter="  ", writer=writer_test)

    for epoch in metric_logger_train.log_every(range(num_epochs),
                                               print_freq=1,
                                               epoch=0,
                                               header="Training"):
        # train for one epoch, printing every 50 iterations
        train_metric = train_one_epoch(model,
                                       optimizer,
                                       data_loader,
                                       criterion,
                                       device,
                                       epoch,
                                       print_freq=40)
        # metric_logger_train.update(**train_metric)

        # update the learning rate
        lr_scheduler.step()
        # evaluate on the test dataset
        test_metric = evaluate(model,
                               criterion,
                               data_loader_test,
                               device=device)

        # print results
        print_result_table(train_metric, test_metric)

        # metric_logger_test.update(**test_metric)
        for key in train_metric.keys():
            writer.add_scalars("metrics/{}".format(key), {
                "{}_train".format(key, key): train_metric[key],
                "{}_test".format(key, key): test_metric[key],
            },
                               global_step=epoch)
        # save checkpoint
        if epoch in epoch_save_ckpt:
            save_checkpoint(model, optimizer, dir.as_posix(), epoch)
    writer.close()

    print("That's it!")
示例#10
0
    # LR Scheduler
    lr_scheduler = torch.optim.lr_scheduler.StepLR(
        optimizer=optimizer,
        step_size=cfg.LR_SCHED_STEP_SIZE,
        gamma=cfg.LR_SCHED_GAMMA)

    # Build data loaders
    data_loader, data_loader_test = build_loaders(args)

    # Loss
    weights = None
    if args.weighted_loss:
        weights = torch.zeros_like(data_loader.dataset[0][1])
        for _, label in data_loader.dataset:
            weights += label
        weights = torch.as_tensor(1.0 / (weights / torch.min(weights)),
                                  device=get_device(args.use_cuda))
    criterion = torch.nn.BCEWithLogitsLoss(weight=weights)

    print("Start training")
    train(model,
          optimizer,
          criterion,
          lr_scheduler,
          data_loader,
          data_loader_test,
          num_epochs=args.epochs,
          use_cuda=args.use_cuda,
          epoch_save_ckpt=args.checkpoints,
          dir=args.checkpoints_dir)
def test_tta(cfg, model, ds, criterion, nf):
    #epoch_loss,epoch_acc,pred_out  = test_tta(cfg, model, valid_loader,criterion,nf)

    #ds, net, criterion, device,epoch = -1,n_tta = 10,n_class = 4
    model.eval()

    device = get_device(cfg)
    logger = gl.get_value('logger')

    if cfg.DATASETS.K_FOLD == 1:
        best_model_fn = osp.join(cfg.MISC.OUT_DIR,
                                 f"{cfg.MODEL.NAME}-best.pth")
    else:
        best_model_fn = osp.join(cfg.MISC.OUT_DIR,
                                 f"{cfg.MODEL.NAME}-Fold-{nf}-best.pth")
    model.load_state_dict(torch.load(best_model_fn))

    n_tta = cfg.MISC.N_TTA
    n_class = cfg.DATASETS.NUM_CLASS

    # in tta, default batch size =1
    n_case = 0.0
    y_true = list()
    y_pred = list()
    total_loss = AvgerageMeter()

    PREDS_ALL = []
    PREDS_ALL_TTA = []
    for idx in tqdm(range(len(ds))):

        #print(images.shape)

        with torch.no_grad():
            #            if cfg.MISC.TTA_MODE in ['mean','mean_softmax']:
            #                pred_sum = torch.zeros((n_class),dtype = torch.float32)
            #            else:
            #                pred_sum = torch.ones((n_class),dtype = torch.float32)
            #
            #for n_t in range(n_tta):

            images, labels, meta_infos = parse_batch(ds[idx])

            y_true.append(labels.item())

            images = images.to(device)
            if meta_infos is not None:
                meta_infos = meta_infos.to(device)

                if meta_infos.dim() == 1:
                    meta_infos = meta_infos[None, ...]

                if images.dim() > 3 and meta_infos.size(0) == 1:

                    meta_infos = meta_infos.repeat(images.size(0), 1)

            labels = labels.to(device)
            labels = labels[None, ...]
            if images.dim() == 3:
                images = images[None, ...]

            if 'SingleView' in cfg.MODEL.NAME or 'SVBNN' in cfg.MODEL.NAME:
                outputs = model(images)
            elif model.mode == 'metasingleview':
                outputs = model(images, meta_infos)

            elif model.mode in ['sv_att', 'sv_db']:

                outputs = model(images, labels)

            if cfg.MISC.ONLY_TEST is False and cfg.DATASETS.NAMES == 'ISIC':
                loss = criterion(outputs, labels)
                total_loss.update(loss.item())

            #if cfg.MODEL.LOSS_TYPE == 'pcs':
            #probs_0 = pcsoftmax(outputs,weight = torch.tensor(cfg.DATASETS.LABEL_W),dim=1)[0].cpu()
            #else:
            if isinstance(outputs, (list, tuple)):
                probs_0 = 0.5 * (F.softmax(outputs[0], dim=1)[0] +
                                 F.softmax(outputs[1], dim=1)[0]).cpu()
            else:

                if 'softmax' in cfg.MISC.TTA_MODE:
                    probs_0 = outputs.cpu().numpy()
                else:
                    probs_0 = F.softmax(outputs, dim=-1).cpu().numpy()

            #save outputs result
            #if cfg.MISC.ONLY_TEST is True:
            PREDS_ALL_TTA.append(outputs.cpu().numpy())

            if cfg.MISC.TTA_MODE in ['mean', 'mean_softmax']:
                pred_sum = np.mean(probs_0, axis=0)
            else:
                pred_sum = np.prod(probs_0, axis=0)
                pred_sum = np.power(pred_sum, 1.0 / n_tta)

            n_case += 1
            probs = np.round_(pred_sum, decimals=4)

            preds = np.argmax(pred_sum)

            y_pred.append(preds)

            if cfg.MISC.ONLY_TEST is False:
                PREDS_ALL.append([*probs, preds, int(labels.item())])
            else:
                PREDS_ALL.append([*probs, preds])

    PREDS_ALL = np.array(PREDS_ALL)
    PREDS_ALL_TTA = np.array(PREDS_ALL_TTA)
    #avg_acc =   (PREDS_ALL[:,-2] == PREDS_ALL[:,-1]).sum()/n_case
    np.set_printoptions(precision=4)

    if cfg.MISC.ONLY_TEST is False:
        pred_stat = calc_stat(y_pred, y_true)
        logger.info(f"Valid  K-fold: {nf}")
        if n_class <= 10:
            logger.info('confusion matix\n')
            cm = pred_stat['cm']
            logger.info('{}\n'.format(cm))
            logger.info("Num All Class: {}".format(np.sum(cm, axis=1)))
            logger.info("Acc All Class1: {}".format(pred_stat['cls_acc1']))
            logger.info("Acc All Class2: {}".format(pred_stat['cls_acc2']))
            logger.info("Acc All Class3: {}".format(pred_stat['cls_acc3']))

        logger.info(
            f"Balance Acc 1 2 3 : {pred_stat['bal_acc1']:.4f} {pred_stat['bal_acc2']:.4f} {pred_stat['bal_acc3']:.4f}"
        )

        logger.info(f"Average Loss: {total_loss.avg:.4f}, " +
                    f"Average Acc:  {pred_stat['avg_acc']}")

        return total_loss.avg, pred_stat['bal_acc1'], PREDS_ALL, PREDS_ALL_TTA
    else:
        return PREDS_ALL, PREDS_ALL_TTA
def test_tta_heatmap(cfg, model, ds, criterion, nf):
    #epoch_loss,epoch_acc,pred_out  = test_tta(cfg, model, valid_loader,criterion,nf)

    #ds, net, criterion, device,epoch = -1,n_tta = 10,n_class = 4

    # cfg.MISC.CALC_HEATMAP is True
    (Path(cfg.MISC.OUT_DIR) / 'heatmap').mkdir(exist_ok=True)

    model.eval()

    device = get_device(cfg)
    logger = gl.get_value('logger')

    if cfg.DATASETS.K_FOLD == 1:
        best_model_fn = osp.join(cfg.MISC.OUT_DIR,
                                 f"{cfg.MODEL.NAME}-best.pth")
    else:
        best_model_fn = osp.join(cfg.MISC.OUT_DIR,
                                 f"{cfg.MODEL.NAME}-Fold-{nf}-best.pth")
    model.load_state_dict(torch.load(best_model_fn))

    n_tta = cfg.MISC.N_TTA
    n_class = cfg.DATASETS.NUM_CLASS

    # in tta, default batch size =1
    n_case = 0.0
    y_true = list()
    y_pred = list()
    total_loss = AvgerageMeter()

    PREDS_ALL = []
    PREDS_ALL_TTA = []
    for idx in tqdm(range(len(ds))):

        #print(images.shape)

        fn = ds.flist[idx]
        img_ori = cv2.imread(fn)
        img_ori = cv2.cvtColor(img_ori, cv2.COLOR_BGR2RGB)
        hh_ori, ww_ori, _ = img_ori.shape

        images, labels, meta_infos, aug_trans = parse_batch(ds[idx])

        y_true.append(labels.item())

        images = images.to(device)
        if meta_infos is not None:
            meta_infos = meta_infos.to(device)

            if meta_infos.dim() == 1:
                meta_infos = meta_infos[None, ...]

            if images.dim() > 3 and meta_infos.size(0) == 1:

                meta_infos = meta_infos.repeat(images.size(0), 1)

        labels = labels.to(device)
        labels = labels[None, ...]
        if images.dim() == 3:
            images = images[None, ...]

        if 'SingleView' in cfg.MODEL.NAME or 'SVBNN' in cfg.MODEL.NAME:
            outputs = model(images)
        elif model.mode == 'metasingleview':
            outputs = model(images, meta_infos)

        elif model.mode in ['sv_att', 'sv_db']:

            outputs = model(images, labels)

        if cfg.MISC.ONLY_TEST is False and cfg.DATASETS.NAMES == 'ISIC':
            loss = criterion(outputs, labels)
            total_loss.update(loss.item())

        #if cfg.MODEL.LOSS_TYPE == 'pcs':
        #probs_0 = pcsoftmax(outputs,weight = torch.tensor(cfg.DATASETS.LABEL_W),dim=1)[0].cpu()
        #else:
        if isinstance(outputs, (list, tuple)):
            probs_0 = 0.5 * (F.softmax(outputs[0], dim=1)[0] +
                             F.softmax(outputs[1], dim=1)[0]).cpu()
        else:

            if 'softmax' in cfg.MISC.TTA_MODE:
                probs_0 = outputs
            else:
                probs_0 = F.softmax(outputs, dim=-1)

        #save outputs result
        #if cfg.MISC.ONLY_TEST is True:
        PREDS_ALL_TTA.append(outputs.detach().cpu().numpy())

        probs = probs_0.detach().cpu().numpy()
        if cfg.MISC.TTA_MODE in ['mean', 'mean_softmax']:
            pred_sum = np.mean(probs, axis=0)
        else:
            pred_sum = np.prod(probs, axis=0)
            pred_sum = np.power(pred_sum, 1.0 / n_tta)

        n_case += 1
        probs = np.round_(pred_sum, decimals=4)

        preds = np.argmax(pred_sum)

        y_pred.append(preds)
        if cfg.MISC.ONLY_TEST is False:
            PREDS_ALL.append([*probs, preds, int(labels.item())])
        else:
            PREDS_ALL.append([*probs, preds])

        # heatmap
        probs_0 = torch.mean(probs_0, dim=0)
        probs_0[preds].backward()

        gradients_IMG = model.get_activations_gradient_IMG()
        #gradients_META = model.get_activations_gradient_META()

        # pool the gradients across the channels
        pooled_gradients_IMG = torch.mean(gradients_IMG, dim=[0, 2, 3])
        #pooled_gradients_LAT = torch.mean(gradients_LAT, dim=[0, 2, 3])

        #pooled_gradients_AP = torch.mean(torch.abs(gradients_AP), dim=[0, 2, 3])
        #pooled_gradients_LAT = torch.mean(torch.abs(gradients_LAT), dim=[0, 2, 3])

        # get the activations of the last  layer
        activations_IMG = model.get_activations_IMG(images).detach()
        #activations_LAT  = model.get_activations_LAT(img).detach()

        # weight the channels by corresponding gradients
        for i in range(pooled_gradients_IMG.shape[0]):
            activations_IMG[:, i, :, :] *= pooled_gradients_IMG[i]
            #activations_LAT[:, i, :, :] *= pooled_gradients_LAT[i]

        # average the channels of the activations
        heatmap_IMG = torch.mean(activations_IMG, dim=1).squeeze().cpu()
        #heatmap_LAT = torch.mean(activations_LAT, dim=1).squeeze().cpu()

        # relu on top of the heatmap
        #heatmap_IMG = np.maximum(heatmap_IMG, 0)
        heatmap_IMG = F.relu(heatmap_IMG)
        #heatmap_LAT = np.maximum(heatmap_LAT, 0)

        # normalize the heatmap
        heatmap_IMG /= torch.max(heatmap_IMG)
        #heatmap_LAT /= torch.max(heatmap_LAT)

        #heatmap_AP *= (heatmap_AP>0.4).float()
        #heatmap_LAT *= (heatmap_LAT>0.4).float()

        hms = heatmap_IMG.cpu().numpy()
        img_w_hm = np.zeros((hh_ori, ww_ori), dtype='float32')
        img_n_hm = np.zeros((hh_ori, ww_ori), dtype='float32') + 0.00001

        # HM
        for hm, trans in zip(hms, aug_trans):
            hm_imin = cv2.resize(hm, (images.shape[3], images.shape[2]))
            img_w_hm += cv2.warpAffine(hm_imin,
                                       trans, (ww_ori, hh_ori),
                                       flags=cv2.INTER_LINEAR,
                                       borderMode=cv2.BORDER_CONSTANT)

            img_n_hm += cv2.warpAffine(np.ones_like(hm_imin),
                                       trans, (ww_ori, hh_ori),
                                       flags=cv2.INTER_LINEAR,
                                       borderMode=cv2.BORDER_CONSTANT)

        hm_out = img_w_hm / img_n_hm

        hm_out = hm_out * ((hm_out > 0.25).astype('float32'))
        hm_out0 = np.uint8(255 * hm_out)

        #hm_out = cv2.applyColorMap(hm_out, cv2.COLORMAP_JET)
        #superimposed_img_AP = hm_out * 0.4 + img_ori[:,:,::-1]
        hm_out = cv2.applyColorMap(
            hm_out0, cv2.COLORMAP_JET) * np.uint8(hm_out0[..., None] > 0.25)
        superimposed_img_AP = hm_out * 0.4 + img_ori[:, :, ::-1]
        #alpha = 0.5
        #superimposed_img_AP = cv2.addWeighted(img_ori, alpha, hm_out, 1 - alpha, 0)
        #superimposed_img_AP = superimposed_img_AP[:,:,::-1]

        label_str = Path(
            fn).stem + ' ' + cfg.DATASETS.DICT_LABEL[preds] + ' prob = ' + str(
                probs[preds])
        #cv2.rectangle(superimposed_img_AP, (0, 0), (200, 40), (0, 0, 0), -1)
        cv2.putText(superimposed_img_AP, label_str, (10, 25),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2)

        fn_heatmap = Path(cfg.MISC.OUT_DIR) / 'heatmap' / (
            Path(fn).stem + '_' + cfg.DATASETS.DICT_LABEL[preds] + '.jpg')
        cv2.imwrite(str(fn_heatmap), superimposed_img_AP)

    PREDS_ALL = np.array(PREDS_ALL)
    PREDS_ALL_TTA = np.array(PREDS_ALL_TTA)
    #avg_acc =   (PREDS_ALL[:,-2] == PREDS_ALL[:,-1]).sum()/n_case
    np.set_printoptions(precision=4)

    if cfg.MISC.ONLY_TEST is False:
        pred_stat = calc_stat(y_pred, y_true)
        logger.info(f"Valid  K-fold: {nf}")
        if n_class <= 10:
            logger.info('confusion matix\n')
            cm = pred_stat['cm']
            logger.info('{}\n'.format(cm))
            logger.info("Num All Class: {}".format(np.sum(cm, axis=1)))
            logger.info("Acc All Class1: {}".format(pred_stat['cls_acc1']))
            logger.info("Acc All Class2: {}".format(pred_stat['cls_acc2']))
            logger.info("Acc All Class3: {}".format(pred_stat['cls_acc3']))

        logger.info(
            f"Balance Acc 1 2 3 : {pred_stat['bal_acc1']:.4f} {pred_stat['bal_acc2']:.4f} {pred_stat['bal_acc3']:.4f}"
        )

        logger.info(f"Average Loss: {total_loss.avg:.4f}, " +
                    f"Average Acc:  {pred_stat['avg_acc']}")

        return total_loss.avg, pred_stat['bal_acc1'], PREDS_ALL, PREDS_ALL_TTA
    else:
        return PREDS_ALL, PREDS_ALL_TTA