示例#1
0
    def test_get_full_path_windows(self):
        folder_name = '/utils/tests'
        file_name = 'test.txt'
        expected = os.getcwd() + '\\test.txt'

        if platform.system() == 'Linux':
            expected = [
                '/home/travis/build/ikostan/'
                'ProjectEuler/utils/tests/test.txt',
                '/home/circleci/project/utils/tests/test.txt'
            ]

        self.assertTrue(get_full_path(folder_name, file_name) in expected)
示例#2
0
def plotTimings(figIdx, dataset, e_layer_sizes, e_times, e_times_all, e_epochs,
                c_layer_sizes, c_times, c_epochs):
    plt.figure(figIdx)
    plt.subplot(3, 1, 1)
    plt.title("%s - Timing" % dataset)
    # (e_lpre, c_lpre, e_lrec, c_lrec, e_lf1, c_lf1) = plt.plot(e_layer_sizes, e_pres, 'wo', c_layer_sizes,  c_pres, 'ko', e_layer_sizes,  e_recs, 'w^', c_layer_sizes,  c_recs, 'k^', e_layer_sizes, e_scores_f1, 'b.', c_layer_sizes,  c_scores_f1, 'r.')
    (e_ltimes, c_ltimes) = plt.plot(e_layer_sizes, e_times, 'r', c_layer_sizes,
                                    c_times, 'b')
    plt.setp(e_ltimes, label='Elastic')
    plt.setp(c_ltimes, label='Compound')
    plt.ylabel("Training Time [s]")
    plt.grid(True)
    plt.legend(loc='upper left', numpoints=1)

    plt.subplot(3, 1, 2)
    (e_lepochs, c_lepochs) = plt.plot(e_layer_sizes, e_epochs, 'r',
                                      c_layer_sizes, c_epochs, 'b')
    plt.setp(e_lepochs, label='Elastic')
    plt.setp(c_lepochs, label='Compound')
    plt.ylabel("Epochs")
    plt.grid(True)
    plt.legend(loc='upper left', numpoints=1)
    plt.savefig(
        utils.get_full_path(Config.PATH_EVAL_ROOT, "%s-timing.pdf" % dataset))

    plt.subplot(3, 1, 3)
    (e_ltimepe,
     c_ltimepe) = plt.plot(e_layer_sizes, [np.mean(x) for x in e_times_all],
                           'r', c_layer_sizes,
                           np.asarray(c_times) / np.asarray(c_epochs), 'b')
    plt.setp(e_ltimepe, label='Elastic')
    plt.setp(c_ltimepe, label='Compound')
    plt.ylabel("Time per epoch [s]")
    plt.grid(True)
    plt.legend(loc='upper left', numpoints=1)
    plt.xlabel('Layer Size')
    plt.savefig(
        utils.get_full_path(Config.PATH_EVAL_ROOT, "%s-timing.pdf" % dataset))
示例#3
0
def words_reader(file_folder: str, file_name: str):
    """
    Reads file and returns all words as a list
    :param file_folder:
    :param file_name:
    :return:
    """

    results = list()
    path = get_full_path(file_folder, file_name)
    with open(path, 'r') as reader:
        for line in reader:
            results += [l.strip('"') for l in line.split(',')]
    return results
示例#4
0
def plotErrorsSep(figIdx, dataset, e_errors_sep, c_errors_sep):
    plt.figure(figIdx)
    plt.title("%s - Error (per layer size)" % dataset)
    for idx, errors in enumerate(e_errors_sep):
        ax = plt.subplot(3, 10, idx)
        plt.plot(e_errors_sep[idx], 'r', c_errors_sep[idx], 'b')
        ax.get_xaxis().set_ticks([])
        ax.get_yaxis().set_ticks([])
        plt.grid(True)
        plt.yticks()
        plt.tight_layout()
    plt.savefig(
        utils.get_full_path(Config.PATH_EVAL_ROOT,
                            "%s-error-sep.pdf" % dataset))
示例#5
0
    def setUpClass(cls):
        """
        Get all leap years from the text file
        and organize them as an array
        :return:
        """

        cls.leap_years = []

        file_path = utils.get_full_path('/Problems_1_to_100/Problem_19/tests',
                                        'leap_years.txt')

        with open(file_path) as source:
            for line in source:
                cls.leap_years.append(int(line.strip()))
示例#6
0
def plotErrors(figIdx, dataset, e_layer_sizes, e_errors, c_layer_sizes,
               c_errors):
    plt.figure(figIdx)
    plt.title("%s - Error" % dataset)
    # (e_lpre, c_lpre, e_lrec, c_lrec, e_lf1, c_lf1) = plt.plot(e_layer_sizes, e_pres, 'wo', c_layer_sizes,  c_pres, 'ko', e_layer_sizes,  e_recs, 'w^', c_layer_sizes,  c_recs, 'k^', e_layer_sizes, e_scores_f1, 'b.', c_layer_sizes,  c_scores_f1, 'r.')
    (e_lerr, c_lerr) = plt.plot(e_layer_sizes, e_errors, 'r', c_layer_sizes,
                                c_errors, 'b')
    plt.setp(e_lerr, label='Elastic')
    plt.setp(c_lerr, label='Compound')
    plt.ylabel("Error")
    plt.grid(True)
    plt.legend(loc='upper right', numpoints=1)
    plt.xlabel('Layer Size')
    plt.savefig(
        utils.get_full_path(Config.PATH_EVAL_ROOT, "%s-error.pdf" % dataset))
示例#7
0
    def test_get_full_path_linux(self):
        target_os = 'Linux'
        folder_name = '/utils/tests'
        file_name = 'test.txt'
        expected = [
            '/home/travis/build/ikostan/'
            'ProjectEuler/utils/tests/test.txt',
            '/home/circleci/project/utils/tests/test.txt'
        ]

        if platform.system() == 'Windows':
            expected = os.getcwd() + '/utils/tests' + '/test.txt'

        self.assertTrue(
            get_full_path(folder_name, file_name, target_os) in expected)
示例#8
0
 def test_compound(hidden_size):
     mode_name = "compound"
     total_logs = {}
     for i in range(0, hidden_size, 10):
         s = i+1
         id = (mode_name + "-" + data_name + "-" + str(s))
         ae = Autoencoder(nvis=len(train_data[0][0]), nhid=s, corruption_level=corruption_level, log_level=log_level, caching=False)
         strt = time.time()
         logs = ae.train(train_data[0], elastic=False, epochs=None, mini_batch_size=mini_batch_size, stop_err_delta=stop_err_delta, supervisedDataCallback=func)
         end = time.time()
         print "Total Training Time: %.3f" % (end-strt)
         total_logs[str(i)] = logs[str(i)]
         ae.visualize_filters("GREY", name=id)
         ae.dump_model(str(id))
     cPickle.dump(total_logs, open(utils.get_full_path(Config.PATH_EVAL_ROOT, "results-%s.pkl" % id), 'wb'))
     return total_logs
示例#9
0
def plotScores(figIdx, dataset, e_layer_sizes, e_pres, e_recs, e_scores_f1,
               c_layer_sizes, c_pres, c_recs, c_scores_f1):
    plt.figure(figIdx)

    plt.subplot(3, 1, 1)
    plt.title("%s - Classification (Mean)" % dataset)
    # (e_lpre, c_lpre, e_lrec, c_lrec, e_lf1, c_lf1) = plt.plot(e_layer_sizes, e_pres, 'wo', c_layer_sizes,  c_pres, 'ko', e_layer_sizes,  e_recs, 'w^', c_layer_sizes,  c_recs, 'k^', e_layer_sizes, e_scores_f1, 'b.', c_layer_sizes,  c_scores_f1, 'r.')
    (e_lpre, c_lpre) = plt.plot(e_layer_sizes, e_pres, 'ro', c_layer_sizes,
                                c_pres, 'bo')
    plt.setp(e_lpre, label='Elastic')
    plt.setp(c_lpre, label='Compound')
    plt.ylabel("Precision")
    plt.grid(True)
    plt.legend(loc='lower right', numpoints=1)

    plt.subplot(3, 1, 2)
    (e_lrec, c_lrec) = plt.plot(e_layer_sizes, e_recs, 'r^', c_layer_sizes,
                                c_recs, 'b^')
    plt.setp(e_lrec, label='Elastic')
    plt.setp(c_lrec, label='Compound')
    plt.ylabel("Recall")
    plt.grid(True)
    plt.legend(loc='lower right', numpoints=1)

    plt.subplot(3, 1, 3)
    e_rects = plt.bar(np.asarray(e_layer_sizes),
                      e_scores_f1,
                      3,
                      alpha=0.8,
                      color='r',
                      error_kw={'ecolor': '0.3'},
                      label='Elastic')
    c_rects = plt.bar(np.asarray(c_layer_sizes) + 3,
                      c_scores_f1,
                      3,
                      alpha=0.8,
                      color='b',
                      error_kw={'ecolor': '0.3'},
                      label='Compound')

    plt.ylabel("F1")
    plt.grid(True)
    plt.legend(loc='lower right', numpoints=1)
    plt.xlabel('Layer Size')

    plt.savefig(
        utils.get_full_path(Config.PATH_EVAL_ROOT, "%s-scores.pdf" % dataset))
示例#10
0
def index(request, template_name):
    if request.method == 'POST':
        postdata = request.POST.copy()
        form = RatingUserForm(postdata)
        if form.is_valid():
            key_expires = datetime.datetime.today() + datetime.timedelta(30)
            user = form.save(commit=False)
            if user.email == settings.KIOSK_EMAIL:
                user.activation_key = 'letmein'
            else:
                user.activation_key = utils.activation_key(user)
            user.ip = request.META['REMOTE_ADDR']
            user.key_expires = key_expires
            form.save()
            if user.email == settings.KIOSK_EMAIL:
                request.session['email'] = settings.KIOSK_EMAIL
                request.session['key'] = 'letmein'
                return redirect(urlresolvers.reverse('films'))
            else:
                html_template = loader.get_template(
                    'ratinguser/email_notification.html')
                plain_template = loader.get_template(
                    'ratinguser/email_notification.txt')
                context = Context({
                    'instance': user,
                    'url': utils.get_full_path(),
                })
                subject, from_email, to = "[Cinefest Audience Choice] Activation required", settings.FROM_EMAIL, user.email

                html_content = html_template.render(context)
                plain_content = plain_template.render(context)

                msg = EmailMultiAlternatives(subject, plain_content,
                                             from_email, [to])
                msg.attach_alternative(html_content, "text/html")
                msg.send()
                messages.success(
                    request,
                    "Thank you. We've sent a verification link to your email address."
                )
                return redirect(urlresolvers.reverse('index'))
    else:
        form = RatingUserForm()
    return render(request, template_name, {'form': form})
示例#11
0
def file_reader():
    """
    Use readline to read txt file python3:
    Source: https://stackoverflow.com/questions/
    28936140/use-readline-to-read-txt-file-python3

    How to get the current working directory using python3:
    https://stackoverflow.com/questions/17359698/
    how-to-get-the-current-working-directory-using-python-3
    :return:
    """

    result = []
    file_path = get_full_path('/Problems_1_to_100/Problem_22/tests',
                              'p022_names.txt')

    with open(file_path) as source:
        for line in source:
            result = [t.replace('"', '') for t in line.split(',')]

    return sorted(result)
示例#12
0
def file_reader():
    """
    Use readline to read txt file python3:
    Source: https://stackoverflow.com/questions/
    28936140/use-readline-to-read-txt-file-python3

    How to get the current working directory using python3:
    https://stackoverflow.com/questions/17359698/
    how-to-get-the-current-working-directory-using-python-3
    :return:
    """

    result = []
    file_path = get_full_path('/Problems_1_to_100/Problem_67/tests',
                              'p067_triangle.txt')

    with open(file_path) as source:
        for line in source:
            temp = [int(t) for t in line.split(' ')]
            # print(temp)  # debug only
            result.append(temp)

    return result
示例#13
0
 def test_elastic(hidden_size):
     mode_name = "elastic"
     id = (mode_name + "-" + data_name + "-" + str(hidden_size))
     ae = Autoencoder(nvis=len(train_data[0][0]), nhid=hidden_size, corruption_level=corruption_level, log_level=log_level, caching=True)
     strt = time.time()
     logs = ae.train(train_data[0], elastic=True, epochs=None, mini_batch_size=mini_batch_size, stop_err_delta=stop_err_delta, supervisedDataCallback=func)
     end = time.time()
     print "Total Training Time: %.3f" % (end-strt)
     ae.visualize_filters("GREY", name=id)
     # codes = ae.encode_all(train_data)
     # codes[codes>0.] = 1.
     # codes[codes<=0.] = 0.
     # codes = codes.astype(int)
     # intCodes = [utils.bool2int(x) for x in codes]
     # print intCodes
     # for i in range(2**hidden_size):
     #     print "Code %d" % i
     #     userIds = [idx for (idx, v) in enumerate(intCodes) if v == i]
     #     for user in userIds:
     #         print dataset.users.getUser(user)
     ae.dump_model(id)
     cPickle.dump(logs, open(utils.get_full_path(Config.PATH_EVAL_ROOT, "results-%s.pkl" % id), 'wb'))
     return logs
示例#14
0
    def visualize_filters(self, mode, panel_shape=None, filter_shape=None, name=None):
        """
        Plot weight matrix in a grid of shape ``panel_shape`` with each cell showing the weights of a hidden node,
        shaped as given by ``filter_shape``.
        :param mode: Either "RGB" or "GREY"
        :param panel_shape:
        :param filter_shape:
        :param name:
        :return:
        """
        num_filters = self.W.shape[0]
        num_features = self.W.shape[1]

        if panel_shape is None:
            panel_shape = (np.ceil(num_filters / 10.).astype(int), 10 + num_filters % 10)

        if filter_shape is None:
            filter_shape = (int(np.sqrt(num_features)), int(np.sqrt(num_features)))

        img = utils.visualize_weights(self.W, panel_shape, filter_shape, mode)

        if name is not None:
            img.save(utils.get_full_path(Config.PATH_EVAL_ROOT, name + "-filters.png"), "PNG")
        img.show()
示例#15
0
        ax.get_yaxis().set_ticks([])
        plt.grid(True)
        plt.yticks()
        plt.tight_layout()
    plt.savefig(
        utils.get_full_path(Config.PATH_EVAL_ROOT,
                            "%s-error-sep.pdf" % dataset))


if __name__ == "__main__":

    dataset = "MNIST"
    maxSize = 301

    fileName = utils.get_full_path(
        Config.PATH_EVAL_ROOT, dataset, "elastic",
        "results-elastic-" + dataset + "-" + str(maxSize) + ".pkl")
    obj = pickleFromWindowsEncoding(fileName)
    (layer_sizes, scores_f1, pres, recs, errors_sep, times, times_integrated,
     times_all, times_overall) = extractInfo(obj)

    c_fileName = utils.get_full_path(
        Config.PATH_EVAL_ROOT, dataset, "compound",
        "results-compound-" + dataset + "-" + str(maxSize) + ".pkl")
    c_obj = pickleFromWindowsEncoding(c_fileName)
    (c_layer_sizes, c_scores_f1, c_pres, c_recs, c_errors_sep, c_times,
     c_times_integrated, c_times_all, c_times_overall) = extractInfo(c_obj)

    epochs = [len(x) for x in times_all]
    errors = [x[-1] for x in errors_sep]
    c_epochs = [len(x) for x in c_times_all]
示例#16
0
文件: ELGraph.py 项目: molybdaen/ELLE
        self._gradCache = [None] * len(self._outNodes)
        self._instantiated = True

    def f(self, x, y):
        a = np.dot(self.W, x) + self.b
        (cost, o, dEda) = self.OutModel.cost_out_grad(a, y)
        return (cost, o)

    def df(self, x, y):
        a = np.dot(self.W, x) + self.b
        (cost, o, dEda) = self.OutModel.cost_out_grad(a, y)
        dEdx = np.dot(self.W.T, dEda)
        return dEdx

    def __str__(self):
        return "%s\nOutput Model = %s\nW = %s\nb = %s" % (
            Node.__str__(self), self.OutModel, self.W, self.b)


if __name__ == "__main__":
    x = np.asarray([-1.0, 1.0, 0.5])
    y = np.asarray([1., 0.])
    cm = ConnectivityMatrix(
        utils.get_full_path(Config.PATH_DATA_ROOT, Config.CONNECTIVITY_FILE))
    g = Graph(3, 2, cm)

    print g
    print "propagation"
    g.propagate(x, y)
    cm.showAsImage()
    g.backpropagate(x, y)
示例#17
0
 def load_model(name):
     return cPickle.load(open(utils.get_full_path(Config.PATH_EVAL_ROOT, r"%s.pkl" % name), "r"))
示例#18
0
 def dump_model(self, name):
     cPickle.dump(self, open(utils.get_full_path(Config.PATH_EVAL_ROOT, r"%s.pkl" % name), "w"))
示例#19
0
文件: ELGraph.py 项目: molybdaen/ELLE
            self.b = np.zeros(shape=(self._dim_out,), dtype=theano.config.floatX)
        self._inCache = [None] * len(self._inNodes)
        self._gradCache = [None] * len(self._outNodes)
        self._instantiated = True

    def f(self, x, y):
        a = np.dot(self.W, x) + self.b
        (cost, o, dEda) = self.OutModel.cost_out_grad(a, y)
        return (cost, o)

    def df(self, x, y):
        a = np.dot(self.W, x) + self.b
        (cost, o, dEda) = self.OutModel.cost_out_grad(a, y)
        dEdx = np.dot(self.W.T, dEda)
        return dEdx

    def __str__(self):
        return "%s\nOutput Model = %s\nW = %s\nb = %s" % (Node.__str__(self), self.OutModel, self.W, self.b)


if __name__ == "__main__":
    x = np.asarray([-1.0, 1.0, 0.5])
    y = np.asarray([1., 0.])
    cm = ConnectivityMatrix(utils.get_full_path(Config.PATH_DATA_ROOT, Config.CONNECTIVITY_FILE))
    g = Graph(3, 2, cm)

    print g
    print "propagation"
    g.propagate(x, y)
    cm.showAsImage()
    g.backpropagate(x, y)
示例#20
0
    def compareElasticCompound(self, elastic_logs, compound_logs):

        e_scores_f1, c_scores_f1 = [], []
        e_pres, c_pres = [], []
        e_recs, c_recs = [], []
        e_times, c_times = [], []
        e_times_integrated = [0.]
        e_errors, c_errors = [], []
        e_errors_sep, c_errors_sep = [], []
        e_last_errors, c_last_errors = [], []

        e_tmp_list = []
        for k in elastic_logs:
            if representsInt(k):
                e_tmp_list.append(int(k))
        c_tmp_list = []
        for k in compound_logs:
            if representsInt(k):
                c_tmp_list.append(int(k))

        e_num_tests = max(e_tmp_list)
        c_num_tests = max(c_tmp_list)

        for numNodes in range(1, e_num_tests + 1):
            (pre, rec,
             f1) = elastic_logs[str(numNodes)][Autoencoder.STR_SCORES]
            time = elastic_logs[str(numNodes)][Autoencoder.STR_TIMES]
            error = elastic_logs[str(numNodes)][Autoencoder.STR_ERRORS]

            e_scores_f1.append(np.mean(f1))
            e_pres.append(np.mean(pre))
            e_recs.append(np.mean(rec))
            e_errors += error
            e_errors_sep.append(error)
            e_last_errors.append(error[-1])
            e_times += time
            e_times_integrated.append(e_times_integrated[-1] + sum(time))

        for numNodes in range(1, c_num_tests + 1):
            (pre, rec,
             f1) = compound_logs[str(numNodes)][Autoencoder.STR_SCORES]
            time = compound_logs[str(numNodes)][Autoencoder.STR_TIMES]
            error = compound_logs[str(numNodes)][Autoencoder.STR_ERRORS]

            c_scores_f1.append(np.mean(f1))
            c_pres.append(np.mean(pre))
            c_recs.append(np.mean(rec))
            c_errors += error
            c_errors_sep.append(error)
            c_last_errors.append(error[-1])
            c_times += time

        plt.figure(1)
        (e_lpre, c_lpre, e_lrec, c_lrec, e_lf1,
         c_lf1) = plt.plot(e_pres, 'wo', c_pres, 'ko', e_recs, 'w^', c_recs,
                           'k^', e_scores_f1, 'b.', c_scores_f1, 'r.')
        plt.setp(e_lpre, label='Precision (E)')
        plt.setp(c_lpre, label='Precision (C)')
        plt.setp(e_lrec, label='Recall (E)')
        plt.setp(c_lrec, label='Recall (C)')
        plt.setp(e_lf1, label='F1 (E)')
        plt.setp(c_lf1, label='F1 (C)')
        plt.axis([0, 100, 0, 1])
        plt.grid(True)
        plt.title("MNIST 10-Digit Classification")
        plt.xlabel('Hidden Nodes')
        plt.ylabel('Mean Classification Scores')
        plt.legend(loc='lower right')
        plt.savefig(utils.get_full_path(Config.PATH_EVAL_ROOT, "f1.pdf"))

        plt.figure(2)
        print len(e_last_errors)
        print len(c_last_errors)
        print e_last_errors
        print c_last_errors
        plt.step(range(1, e_num_tests + 1), e_last_errors, 'b')
        plt.step(range(1, c_num_tests + 1), c_last_errors, 'r')
        # plt.step(range(1,min((e_num_tests, c_num_tests))), c_last_errors)
        plt.grid(True)
        plt.legend(("Elastic", "Compound"))
        plt.xlabel('Hidden Layer Size')
        plt.ylabel('Reconstruction Error')
        plt.savefig(utils.get_full_path(Config.PATH_EVAL_ROOT, "errors.pdf"))

        plt.figure(3, figsize=(20, 6))
        ax = plt.subplot(2, 1, 1)
        summer = 0
        ticks = [summer]
        for (i, e) in enumerate(e_errors_sep):
            plt.plot(range(summer, summer + len(e)), e, 'b')
            # plt.plot((summer, summer), (0, 250), 'k-', linewidth=0.5, alpha=0.2)
            summer += len(e)
            ticks.append(summer)
        plt.grid(True)
        # Set the ticks and labels...
        labels = []
        for i in range(1, len(ticks) + 1):
            if i % 10 == 0:
                labels.append(str(i))
            else:
                labels.append(" ")
        plt.xticks(ticks, labels)
        plt.legend(("Elastic", ))
        plt.xlabel('Hidden Layer Size')
        plt.ylabel('Reconstruction Error')

        ax = plt.subplot(2, 1, 2)
        summer = 0
        ticks = [summer]
        for (i, e) in enumerate(c_errors_sep):
            plt.plot(range(summer, summer + len(e)), e, 'r')
            # plt.plot((summer, summer), (0, 250), 'k-', linewidth=0.5, alpha=0.2)
            summer += len(e)
            ticks.append(summer)
        plt.grid(True)
        # Set the ticks and labels...
        labels = []
        for i in range(1, len(ticks) + 1):
            if i % 10 == 0:
                labels.append(str(i))
            else:
                labels.append(" ")
        plt.xticks(ticks, labels)
        plt.legend(("Compound", ))
        plt.xlabel('Hidden Layer Size')
        plt.ylabel('Reconstruction Error')
        plt.savefig(
            utils.get_full_path(Config.PATH_EVAL_ROOT, "error-drops.pdf"))

        plt.figure(4)
        plt.subplot(2, 1, 1)
        plt.plot(e_times)
        plt.plot(e_times, 'bo')
        plt.grid(True)
        plt.title("Elastic")
        plt.xlabel('Hidden Layer Size')
        plt.ylabel('Training Time [s] (per node)')

        plt.subplot(2, 1, 2)
        plt.plot(e_times_integrated, 'b_', c_times, 'r_')
        plt.grid(True)
        plt.legend(("Elastic", "Compound"), loc='upper left')
        plt.xlabel('Hidden Layer Size')
        plt.ylabel('Training Time [s] (total)')
        plt.savefig(utils.get_full_path(Config.PATH_EVAL_ROOT, "times.pdf"))
        plt.show()