def save_mask(self, pred): if self.test_idx == 0: data_path = get_path(self.args) self.test_imgs, _ = get_test_fnames(self.args, data_path) fname = os.path.basename(self.test_imgs[self.test_idx]).replace( "_x", "") np.save(os.path.join(self.save_dir, fname), pred, allow_pickle=False) self.test_idx += 1
def setup(self, stage=None): imgs = load_data(self.data_path, "*_x.npy") lbls = load_data(self.data_path, "*_y.npy") self.test_imgs, self.kwargs["meta"] = get_test_fnames( self.args, self.data_path, self.kwargs["meta"]) if self.args.exec_mode != "predict" or self.args.benchmark: train_idx, val_idx = list(self.kfold.split(imgs))[self.args.fold] self.train_imgs = get_split(imgs, train_idx) self.train_lbls = get_split(lbls, train_idx) self.val_imgs = get_split(imgs, val_idx) self.val_lbls = get_split(lbls, val_idx) if is_main_process(): ntrain, nval = len(self.train_imgs), len(self.val_imgs) print(f"Number of examples: Train {ntrain} - Val {nval}") elif is_main_process(): print(f"Number of test examples: {len(self.test_imgs)}")