nii_img = nii_obj.get_data() header = nii_obj.header affine = nii_obj.affine # reshape to account for implicit "1" channel nii_img = np.reshape(nii_img, nii_img.shape + (1, )) nii_img = pad_image(nii_img) # segment segmented_img = apply_model_single_input(nii_img, model) # save resultant image segmented_filename = os.path.join(SEG_DIR, filename) segmented_nii_obj = nib.Nifti1Image(segmented_img, affine=affine, header=header) nib.save(segmented_nii_obj, segmented_filename) # Reorient back to original before comparisons print("Reorienting...") utils.reorient(filename, DATA_DIR, SEG_DIR) # get probability volumes and threshold image print("Thresholding...") utils.threshold(filename, REORIENT_DIR, REORIENT_DIR, 0.5) if os.path.exists(TMPDIR): shutil.rmtree(TMPDIR) K.clear_session()
# reshape to account for implicit "1" channel nii_img = np.reshape(nii_img, nii_img.shape + (1, )) # segment segmented_img = apply_model_single_input(nii_img, model) # save resultant image segmented_filename = os.path.join(SEG_DIR, filename) segmented_nii_obj = nib.Nifti1Image(segmented_img, affine=affine, header=header) nib.save(segmented_nii_obj, segmented_filename) # Reorient back to original before comparisons print("Reorienting...") utils.reorient(filename, src_dir, SEG_DIR) # get probability volumes and threshold image print("Thresholding...") utils.threshold(filename, REORIENT_DIR, REORIENT_DIR, 0.5) if results.INMASK: mask_src_dir, mask = os.path.split(results.INMASK) preprocess.preprocess(mask, src_dir=mask_src_dir, dst_dir=PREPROCESSING_DIR, tmp_dir=TMPDIR, verbose=0, skullstrip_script_path=SKULLSTRIP_SCRIPT_PATH, remove_tmp_files=True)