def main(): args = make_args() with open(args.cfg_path, 'r') as handle: options_yaml = yaml.load(handle) update_values(options_yaml, vars(args)) # set random seed to cpu and gpu if args.seed: torch.manual_seed(args.seed) if args.use_cuda: torch.cuda.manual_seed(args.seed) try: threadpool = ThreadPool(args.batch_size) except Exception as e: print(e) exit(1) Train(args, threadpool)
def __init__(self, opts): super().__init__() with open("./" + opts.cfg_path_tl, 'r') as handle: self.options_yaml_tl = yaml.load(handle) update_values(self.options_yaml_tl, vars(opts)) self.mean = np.array([0.408, 0.447, 0.470], dtype=np.float32).reshape(1, 1, 3) self.std = np.array([0.289, 0.274, 0.278], dtype=np.float32).reshape(1, 1, 3) self.max_per_image = 100 self.opt = opts self.net_inp_height, self.net_inp_width = self.opt.height, self.opt.width self.net_out_height, self.net_out_width = self.net_inp_height // 4, self.net_inp_width // 4 self.num_classes = len(self.opt.classes_names) self.m_obj_engine = self.load_engine() self.detection_inputs, self.detection_outputs, self.detection_bindings, self.detection_stream = allocate_buffers( self.m_obj_engine) self.detection_context = self.m_obj_engine.create_execution_context()
from torch import autograd from torch.autograd import Variable from models.gdan import CVAE, Generator, Discriminator, Regressor from utils.config_gdan import parser from utils.data_factory import DataManager from utils.utils import load_data, update_values, get_negative_samples from utils.logger import Logger, log_args args = parser.parse_args() # if yaml config exists, load and override default ones if args.config is not None: with open(args.config, 'r') as fin: options_yaml = yaml.load(fin) update_values(options_yaml, vars(args)) data_dir = Path(args.data_root) cub_dir = data_dir / Path(args.data_name) att_path = cub_dir / Path('att_splits.mat') res_path = cub_dir / Path('res101.mat') save_dir = Path(args.ckpt_dir) if not save_dir.is_dir(): save_dir.mkdir(parents=True) result_dir = Path(args.result) if not result_dir.is_dir(): result_dir.mkdir(parents=True) result_path = save_dir / Path('gdan_loss.txt')
def main(): args = make_args() with open(args.cfg_path, 'r') as handle: options_yaml = yaml.load(handle) update_values(options_yaml, vars(args)) detect_img_test(yolo_detect(args))