示例#1
0
def kitti_loop(vo_fn, im_dir, seq):
    i = 0
    loops = []
    db = []
    dbkp = []
    avg_rate = 0
    loop_count = 0
    last_loop_id = -1
    skipped = False
    j = 0
    with open(vo_fn, 'r') as vo_f, open('kitti_traj.txt', 'w') as t_f, \
            open('kitti_loops.txt', 'w') as l_f, tf.Session() as sess:

        calc = utils.CALC2('model', sess, ret_c5=True)
        qt = []
        pts = []
        ims = []
        for line in vo_f.readlines():
            if len(line) != 0 and line[
                    0] != "#":  # skip comments and empty line at the end
                line_split = line.split()
                frame_id = str(i)
                i += 1
                x = line_split[3]
                y = line_split[7]
                pts.append([float(x), float(y)])
                t_f.write(frame_id + ',' + x + ',' + y + '\n')

                fl_nm = str(i).zfill(6) + ".png"
                im = cv2.imread(join(im_dir, "image_2/" + fl_nm))
                if im is None or im.shape[0] == 0:
                    print("No image: %s" % fl_nm)
                    break

                ims.append(im)
                w = int(4.0 / 3 * im.shape[0]) // 2
                _w = im.shape[1] // 2
                #im = im[:, (_w-w):(_w+w+1),:]
                im = cv2.cvtColor(cv2.resize(im, (vw, vh)), cv2.COLOR_BGR2RGB)
                t0 = time()

                descr, c5 = calc.run(im)
                kp, kp_d = utils.kp_descriptor(c5)
                dbkp.append((kp, kp_d))
                db.append(descr)
                if i > 2 * N:
                    t1 = time()
                    j = close_loop(db[:-N], dbkp, descr, (kp, kp_d))
                    t = (time() - t1) * 1000
                    qt.append(str(len(db)) + "," + str(t) + "\n")
                    if j > 0:
                        if last_loop_id == -1 or loop_count == 0:
                            last_loop_id = j
                            print("LCD HYPOTHESIS: %d -> %d" % (i, j))
                            loop_count += 1
                        elif abs(j - last_loop_id) < W:
                            print("LCD HYPOTHESIS INCREASE: %d -> %d" % (i, j))
                            loop_count += 1
                        else:
                            loop_count = 0
                            last_loop_id = -1
                            skipped = False
                    else:
                        loop_count = 0
                        last_loop_id = -1
                        skipped = False
                # Only time processing, not IO
                if i > 0:  # TF take one run to warm up. Dont fudge results
                    rate = 1.0 / (time() - t0)
                    avg_rate += (rate - avg_rate) / (i + 1)
                    print("Frame %d, rate = %f Hz, avg rate = %f Hz" %
                          (i, rate, avg_rate))

                if loop_count >= C:
                    print("LOOP DETECTED: %d -> %d" % (i, j))
                    ii = len(pts) - C // 2 - 1
                    jj = j - W // 2
                    l_f.write(str(pts[ii][0]) + "," + \
                        str(pts[ii][1]) + "," + str(pts[jj][0]) + \
                        "," + str(pts[jj][1]) + "\n")
                    loop_count = 0
                    skipped = False
                    match = np.concatenate((ims[ii], ims[jj]), axis=1)
                    cv2.imwrite(
                        'plots/match_kitti%s_%d_%d.png' % (seq, ii, jj), match)
                    # remove loopp descr since we have revisited this location
                    db = db[:jj] + db[jj + W // 2:]
                    pts = pts[:jj] + pts[jj + W // 2:]
                    ims = ims[:jj] + ims[jj + W // 2:]
    with open('kitti_q_times.txt', 'w') as q_f:
        q_f.writelines(qt)
示例#2
0
def get_prec_recall(model_dir,
                    data_path,
                    num_include=5,
                    title='Precision-Recall Curve',
                    checkpoint=None,
                    netvlad_feat=None,
                    include_calc=False):

    database = []  # stored descriptors
    database_kp = []  # stored kp and kp descriptors
    database_labels = []  # the image labels
    database_ims = []

    db_calc1 = []

    mem_path = data_path + "/memory"
    live_path = data_path + "/live"

    print("memory path: ", mem_path)
    print("live path: ", live_path)

    mem_files = sorted([path.join(mem_path, f) for f in listdir(mem_path)])
    live_files = sorted([path.join(live_path, f) for f in listdir(live_path)])

    if netvlad_feat is not None:
        # Assumes netvlad file order was sorted too
        db_netvlad = np.fromfile(netvlad_feat + "_db.bin",
                                 dtype=np.float32).reshape(len(mem_files), -1)

        q_netvlad = np.fromfile(netvlad_feat + "_q.bin",
                                dtype=np.float32).reshape(len(live_files), -1)
    t_calc = []
    ims = np.empty((1, calc2.vh, calc2.vw, 3), dtype=np.float32)

    if include_calc:
        caffe.set_mode_gpu()
        # Must be placed in 'calc_model'
        calc1 = caffe.Net('calc_model/deploy.prototxt',
                          1,
                          weights='calc_model/calc.caffemodel')
        # Use caffe's transformer
        transformer = caffe.io.Transformer({'X1': (1, 1, 120, 160)})
        transformer.set_raw_scale('X1', 1. / 255)

    n_incorrect = 0

    with tf.compat.v1.Session() as sess:
        calc = utils.CALC2(model_dir, sess, ret_c5=True, checkpoint=checkpoint)
        for fl in mem_files:
            print("loading image ", fl, " to database")
            #ims[0] = cv2.cvtColor(cv2.resize(cv2.imread(fl), (calc2.vw, calc2.vh)),
            #            cv2.COLOR_BGR2RGB)
            _im = cv2.imread(fl)
            im = cv2.cvtColor(cv2.resize(_im, (calc2.vw, calc2.vh)),
                              cv2.COLOR_BGR2RGB)
            database_ims.append(im)
            ims[0] = im / 255.0
            t0 = time()
            descr, c5 = calc.run(ims)
            t_calc.append(time() - t0)
            kp, kp_d = kp_descriptor(c5)
            database_kp.append((kp, kp_d))
            database.append(descr)
            database_labels.append(
                int(
                    re.match('.*?([0-9]+)$',
                             path.splitext(path.basename(fl))[0]).group(1)))

            if include_calc:
                im = cv2.equalizeHist(
                    cv2.cvtColor(
                        cv2.resize(_im, (160, 120),
                                   interpolation=cv2.INTER_CUBIC),
                        cv2.COLOR_BGR2GRAY))
                calc1.blobs['X1'].data[...] = transformer.preprocess('X1', im)
                calc1.forward()
                d = np.copy(calc1.blobs['descriptor'].data[...])
                d /= np.linalg.norm(d)
                db_calc1.append(d)

        correct = []
        scores = []

        correct_reg = []
        scores_reg = []

        correct_nv = []
        scores_nv = []

        correct_c1 = []
        scores_c1 = []

        if include_calc:
            db_calc1 = np.concatenate(tuple(db_calc1), axis=0)

        database = np.concatenate(tuple(database), axis=0)
        matcher = cv2.BFMatcher(cv2.NORM_L2)

        #plt.ion()
        imdata = None
        i = 0
        for fl in live_files:
            im_label_k = int(
                re.match('.*?([0-9]+)$',
                         path.splitext(path.basename(fl))[0]).group(1))

            _im = cv2.imread(fl)
            im = cv2.cvtColor(cv2.resize(_im, (calc2.vw, calc2.vh)),
                              cv2.COLOR_BGR2RGB)
            ims[0] = im / 255.0
            t0 = time()
            descr, c5 = calc.run(ims)
            t_calc.append(time() - t0)
            kp, kp_d = kp_descriptor(c5)

            if netvlad_feat is not None:
                sim_nv = np.sum(q_netvlad[i:i + 1, :] * db_netvlad, axis=-1)
                i_max_sim_nv = np.argmax(sim_nv)
                max_sim_nv = sim_nv[i_max_sim_nv]
                scores_nv.append(max_sim_nv)
                db_lab = database_labels[i_max_sim_nv]
                correct_nv.append(
                    int(check_match(im_label_k, db_lab, num_include)))

            if include_calc:
                im = cv2.equalizeHist(
                    cv2.cvtColor(
                        cv2.resize(_im, (160, 120),
                                   interpolation=cv2.INTER_CUBIC),
                        cv2.COLOR_BGR2GRAY))
                calc1.blobs['X1'].data[...] = transformer.preprocess('X1', im)
                calc1.forward()
                d = np.copy(calc1.blobs['descriptor'].data[...])
                d /= np.linalg.norm(d)
                sim_c1 = np.sum(d * db_calc1, axis=-1)

                i_max_sim_c1 = np.argmax(sim_c1)
                max_sim_c1 = sim_c1[i_max_sim_c1]

            sim = np.sum(descr * database, axis=-1)

            i_max_sim_reg = np.argmax(sim)
            max_sim_reg = sim[i_max_sim_reg]

            t0 = time()
            K = 7
            top_k_sim_ind = np.argpartition(sim, -K)[-K:]

            max_sim = -1.0
            i_max_sim = -1
            best_match_tuple = None
            for k in top_k_sim_ind:
                db_kp, db_kp_d = database_kp[k]
                matches = matcher.knnMatch(kp_d, db_kp_d, 2)
                good = []
                pts1 = []
                pts2 = []
                for m, n in matches:
                    if m.distance < 0.7 * n.distance:
                        good.append(m)
                        pts1.append(db_kp[m.trainIdx].pt)
                        pts2.append(kp[m.queryIdx].pt)
                if len(good) > 7:
                    pts1 = np.int32(pts1)
                    pts2 = np.int32(pts2)
                    curr_sim = sim[k]
                    if curr_sim > max_sim:
                        max_sim = curr_sim
                        i_max_sim = k
                        best_match_tuple = (kp, db_kp, good, pts1, pts2)

            if i_max_sim > -1:
                F, mask = cv2.findFundamentalMat(best_match_tuple[3],
                                                 best_match_tuple[4],
                                                 cv2.FM_RANSAC)
                if F is None:
                    max_sim = -1.0
                    i_max_sim = -1
            print("Comparison took", (time() - t0) * 1000, "ms")
            scores.append(max_sim)
            db_lab = database_labels[i_max_sim]
            correct.append(
                int(check_match(im_label_k, db_lab, num_include)
                    ) if i_max_sim > -1 else 0)
            scores_reg.append(max_sim_reg)
            db_lab = database_labels[i_max_sim_reg]
            correct_reg.append(
                int(check_match(im_label_k, db_lab, num_include)))

            if include_calc:
                scores_c1.append(max_sim_c1)
                db_lab = database_labels[i_max_sim_c1]
                correct_c1.append(
                    int(check_match(im_label_k, db_lab, num_include)))
            '''
            if correct[-1]:
                mask = np.squeeze(mask)
                good = []
                for i in range(len(best_match_tuple[2])):
                    if mask[i]:
                        good.append(best_match_tuple[2][i])
                if 1: #imdata is None:
                    imdata = plt.imshow(cv2.drawMatches(im, best_match_tuple[0], 
                        database_ims[i_max_sim], best_match_tuple[1], good,
                        None, flags=4))
                else:
                    imdata.set_data(cv2.drawMatches(im, best_match_tuple[0], 
                        database_ims[i_max_sim], best_match_tuple[1], good,
                        None, flags=4))
                plt.pause(0.0000001)
                plt.show()
            '''
            print("Proposed match G-CALC2:", im_label_k, ", ",
                  database_labels[i_max_sim], ", score = ", max_sim,
                  ", Correct =", correct[-1])
            print("Proposed match CALC2:", im_label_k, ", ",
                  database_labels[i_max_sim_reg], ", score = ", max_sim_reg,
                  ", Correct =", correct_reg[-1])
            if include_calc:
                print("Proposed match CALC:", im_label_k, ", ",
                      database_labels[i_max_sim_c1], ", score = ", max_sim_c1,
                      ", Correct =", correct_c1[-1])
            if netvlad_feat is not None:
                print("Proposed match NetVLAD:", im_label_k, ", ",
                      database_labels[i_max_sim_nv], ", score = ", max_sim_nv,
                      ", Correct =", correct_nv[-1])
            print()
            i += 1
    print("Mean CALC2 run time: %f ms" % (1000 * np.mean(np.array(t_calc))))

    precision, recall, threshold = precision_recall_curve(correct, scores)

    precision_reg, recall_reg, threshold = precision_recall_curve(
        correct_reg, scores_reg)

    precision_c1 = recall_c1 = None
    if include_calc:
        precision_c1, recall_c1, threshold = precision_recall_curve(
            correct_c1, scores_c1)

    pnv = rnv = None
    if netvlad_feat is not None:
        pnv, rnv, threshold = precision_recall_curve(correct_nv, scores_nv)
    print("N Incorrect:", n_incorrect)

    return precision, recall, precision_reg, recall_reg, precision_c1, recall_c1, pnv, rnv
def save_desc(model_dir,
              data_path,
              num_include=5,
              title='Precision-Recall Curve',
              checkpoint=None,
              netvlad_feat=None,
              include_calc=False):

    database = []  # stored descriptors
    database_kp = []  # stored kp and kp descriptors
    database_labels = []  # the image labels
    database_ims = []
    live_database = []
    db_calc1 = []

    ### read img ###
    base_imgs_path = '/home/jiayao/catkin_ws_docker/netvlad/dataset/base/2019082701/TansoV/cam0/'  # on docker
    query_imgs_path = '/home/jiayao/catkin_ws_docker/netvlad/dataset/query/2019082702/TansoV/cam0/'  # on docker

    #mem_path = data_path + "/memory"
    #live_path = data_path + "/live"

    mem_path = base_imgs_path
    live_path = query_imgs_path

    print("memory path: ", mem_path)
    print("live path: ", live_path)

    #mem_files = sorted([path.join(mem_path, f) for f in listdir(mem_path)])
    #live_files = sorted([path.join(live_path, f) for f in listdir(live_path)])

    base_imgs, base_ts = read_imgs(base_imgs_path, 1)
    query_imgs, query_ts = read_imgs(query_imgs_path, 10)
    mem_files = base_imgs
    live_files = query_imgs

    pickle.dump(base_imgs, open('./res/base_imgs.txt', 'wb'))
    pickle.dump(base_ts, open('./res/base_ts.txt', 'wb'))
    pickle.dump(query_imgs, open('./res/query_imgs.txt', 'wb'))
    pickle.dump(query_ts, open('./res/query_ts.txt', 'wb'))

    print('total mem files: ', len(mem_files), ' total live files ',
          len(live_files))

    #
    t_calc = []
    ims = np.empty((1, calc2.vh, calc2.vw, 3), dtype=np.float32)
    #
    # # if include_calc:
    # #     caffe.set_mode_gpu()
    # #     # Must be placed in 'calc_model'
    # #     calc1 = caffe.Net('calc_model/deploy.prototxt', 1, weights='calc_model/calc.caffemodel')
    # #     # Use caffe's transformer
    # #     transformer = caffe.io.Transformer({'X1':(1,1,120,160)})
    # #     transformer.set_raw_scale('X1',1./255)
    #
    # n_incorrect = 0
    #
    with tf.Session() as sess:
        calc = utils.CALC2(model_dir, sess, ret_c5=True, checkpoint=checkpoint)
        for fl in mem_files:
            #print("loading image ", fl, " to database")
            #ims[0] = cv2.cvtColor(cv2.resize(cv2.imread(fl), (calc2.vw, calc2.vh)),
            #            cv2.COLOR_BGR2RGB)
            _im = cv2.imread(fl)
            im = cv2.cvtColor(cv2.resize(_im, (calc2.vw, calc2.vh)),
                              cv2.COLOR_BGR2RGB)
            database_ims.append(im)
            ims[0] = im / 255.0
            t0 = time()
            descr, c5 = calc.run(ims)
            t_calc.append(time() - t0)
            #         kp, kp_d = kp_descriptor(c5)
            #         database_kp.append((kp, kp_d))
            database.append(descr)
            print('total database:', len(database), 'time:', t_calc[-1], ' ms')
            #save desc
            pickle.dump(database, open('./res/base_img_desc_calc.txt', 'wb'))
    #         database_labels.append(int(re.match('.*?([0-9]+)$',
    #                                             path.splitext(path.basename(fl))[0]).group(1)))
    #
    #         if include_calc:
    #             im = cv2.equalizeHist(cv2.cvtColor(cv2.resize(_im,
    #                                                           (160, 120), interpolation = cv2.INTER_CUBIC),
    #                                                cv2.COLOR_BGR2GRAY))
    #             calc1.blobs['X1'].data[...] = transformer.preprocess('X1', im)
    #             calc1.forward()
    #             d = np.copy(calc1.blobs['descriptor'].data[...])
    #             d /= np.linalg.norm(d)
    #             db_calc1.append(d)
    #
    #     correct = []
    #     scores = []
    #
    #     correct_reg = []
    #     scores_reg = []
    #
    #     correct_nv = []
    #     scores_nv = []
    #
    #     correct_c1 = []
    #     scores_c1 = []
    #
    #     if include_calc:
    #         db_calc1 = np.concatenate(tuple(db_calc1), axis=0)
    #
    #     database = np.concatenate(tuple(database), axis=0)
    #     matcher = cv2.BFMatcher(cv2.NORM_L2)
    #
    #     #plt.ion()
    #     imdata = None
    #     i = 0
        for fl in live_files:
            #         im_label_k = int(re.match('.*?([0-9]+)$',
            #                                   path.splitext(path.basename(fl))[0]).group(1))
            #
            _im = cv2.imread(fl)
            im = cv2.cvtColor(cv2.resize(_im, (calc2.vw, calc2.vh)),
                              cv2.COLOR_BGR2RGB)
            ims[0] = im / 255.0
            t0 = time()
            descr, c5 = calc.run(ims)
            #        t_calc.append(time()-t0)
            live_database.append(descr)
            print('total database:', len(live_database), 'time:', t_calc[-1],
                  ' ms')
            pickle.dump(live_database,
                        open('./res/query_img_desc_calc.txt', 'wb'))
示例#4
0
def show_local_descr(model_dir, im_fls, train_dirs, cls):
    vh = calc2.vh
    vw = calc2.vw
    im_fls = im_fls.split(',')
    assert len(im_fls) == 3

    train_fls = []
    for i in range(len(train_dirs)):
        for f in listdir(train_dirs[i]):
            train_fls.append(path.join(train_dirs[i], f))

    from sklearn.decomposition import KernelPCA as PCA
    import matplotlib.patches as mpatches

    N = 2

    train_ims = np.empty((len(train_fls), vh, vw, 3), dtype=np.float32)
    for i in range(len(train_fls)):
        train_ims[i] = cv2.cvtColor(
            cv2.resize(cv2.imread(train_fls[i]),
                       (vw, vh)), cv2.COLOR_BGR2RGB) / 255.

    ims = np.empty((3, vh, vw, 3), dtype=np.float32)
    for i in range(len(im_fls)):
        ims[i] = cv2.cvtColor(cv2.resize(cv2.imread(im_fls[i]),
                                         (vw, vh)), cv2.COLOR_BGR2RGB) / 255.

    with tf.compat.v1.Session() as sess:
        calc = utils.CALC2(model_dir, sess)

        d_train = calc.run(train_ims).reshape(
            (len(train_fls), vh // 16 * vw // 16,
             4 * (1 + len(calc_classes.keys()))))
        # Each class has 4 local descriptors
        didx = 4 * (1 + calc_classes[cls[0]])
        d_cls_train = d_train[:, :,
                              didx:didx + 4].reshape(4 * len(train_fls), -1)
        didx2 = 4 * (1 + calc_classes[cls[1]])
        d_cls2_train = d_train[:, :, didx2:didx2 + 4].reshape(
            4 * len(train_fls), -1)
        d_app_train = d_train[:, :, :4].reshape(4 * len(train_fls), -1)

        d = calc.run(ims).reshape(
            (3, vh // 16 * vw // 16, 4 * (1 + len(calc_classes.keys()))))

        # Now just take the first local descriptor
        d_cls = d[:, :, didx:didx + 1].reshape(3, -1)
        d_cls2 = d[:, :, didx2:didx2 + 1].reshape(3, -1)
        d_app = d[:, :, :1].reshape(3, -1)

    pca = PCA(N)
    pca.fit(d_cls_train)
    dcc1 = pca.transform(d_cls)  # calculate the principal components
    dcc1 = dcc1 / np.linalg.norm(dcc1, axis=-1)[..., np.newaxis]

    pca.fit(d_cls2_train)
    dcc2 = pca.transform(d_cls2)  # calculate the principal components
    dcc2 = dcc2 / np.linalg.norm(dcc2, axis=-1)[..., np.newaxis]

    pca.fit(d_app_train)
    dac = pca.transform(d_app)  # calculate the principal components
    dac = dac / np.linalg.norm(dac, axis=-1)[..., np.newaxis]

    minx = -1.1  #min(np.min(dac[:,0]), np.min(dcc1[:,0]))-.1
    maxx = 1.1  # max(np.max(dac[:,0]), np.max(dcc1[:,0]))+.1
    miny = -1.1  #min(np.min(dac[:,1]), np.min(dcc1[:,1]))-.1
    maxy = 1.1  #max(np.max(dac[:,1]), np.max(dcc1[:,1]))+.1
    x = np.zeros_like(dac[:, 0])

    rcParams['font.sans-serif'] = 'DejaVu Sans'
    rcParams['font.size'] = 10
    rcParams['patch.linewidth'] = .5
    rcParams['figure.figsize'] = [8.0, 3.0]
    rcParams['figure.subplot.bottom'] = 0.2
    rcParams['savefig.dpi'] = 200.0
    rcParams['figure.dpi'] = 200.0

    fig = plt.figure()
    ax = fig.add_subplot(131, aspect='equal')
    ax.quiver(x,
              x,
              dcc1[:, 0],
              dcc1[:, 1],
              color=['b', 'g', 'r'],
              scale=1,
              units='xy',
              width=.02)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlim([minx, maxx])
    ax.set_ylim([miny, maxy])
    plt.title(cls[0])

    ax = fig.add_subplot(132, aspect='equal')
    ax.quiver(x,
              x,
              dcc2[:, 0],
              dcc2[:, 1],
              color=['b', 'g', 'r'],
              scale=1,
              units='xy',
              width=.02)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlim([minx, maxx])
    ax.set_ylim([miny, maxy])
    plt.title(cls[1])

    ax = fig.add_subplot(133, aspect='equal')
    ax.quiver(x,
              x,
              dac[:, 0],
              dac[:, 1],
              color=['b', 'g', 'r'],
              scale=1,
              units='xy',
              width=.02)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlim([minx, maxx])
    ax.set_ylim([miny, maxy])
    plt.title('appearance')

    l1 = mpatches.Patch(color='b', label='database')
    l2 = mpatches.Patch(color='g', label='positive')
    l3 = mpatches.Patch(color='r', label='negative')
    h = plt.legend(handles=[l1, l2, l3])
    h.get_frame().set_alpha(0.0)  # transluscent legend :D
    h.set_draggable(True)
    plt.show()
示例#5
0
def show_local_descr(model_dir, im_fls, cls):
    vh = calc2.vh
    vw = calc2.vw
    im_fls = im_fls.split(',')
    assert len(im_fls) == 3
    import pycuda.autoinit
    import pycuda.gpuarray as gpuarray
    import skcuda.linalg as linalg
    from skcuda.linalg import PCA as cuPCA
    import skcuda.misc as cumisc
    import matplotlib.patches as mpatches

    N = 2
    ims = np.empty((3, vh, vw, 3), dtype=np.float32)
    for i in range(len(im_fls)):
        ims[i] = cv2.cvtColor(cv2.resize(cv2.imread(im_fls[i]),
                                         (vw, vh)), cv2.COLOR_BGR2RGB) / 255.
    with tf.Session() as sess:
        calc = utils.CALC2(model_dir, sess)
        d = calc.run(ims).reshape(
            (3, vh // 16 * vw // 16, 4 * (1 + len(calc_classes.keys()))))
        didx = 4 * (1 + calc_classes[cls[0]])
        d_cls = d[:, :, didx:didx + 4].reshape(3, -1)
        didx2 = 4 * (1 + calc_classes[cls[1]])
        d_cls2 = d[:, :, didx2:didx2 + 4].reshape(3, -1)
        d_app = d[:, :, :4].reshape(3, -1)

    pca = cuPCA(N)
    dcls_gpu = gpuarray.GPUArray(d_cls.shape, np.float32, order="F")
    dcls_gpu.set(d_cls)  # copy data to gpu
    dcc1 = pca.fit_transform(
        dcls_gpu).get()  # calculate the principal components
    dcc1 = dcc1 / np.linalg.norm(dcc1, axis=-1)[..., np.newaxis]

    dcls2_gpu = gpuarray.GPUArray(d_cls.shape, np.float32, order="F")
    dcls2_gpu.set(d_cls2)  # copy data to gpu
    dcc2 = pca.fit_transform(
        dcls2_gpu).get()  # calculate the principal components
    dcc2 = dcc2 / np.linalg.norm(dcc2, axis=-1)[..., np.newaxis]

    dapp_gpu = gpuarray.GPUArray(d_cls.shape, np.float32, order="F")
    dapp_gpu.set(d_app)  # copy data to gpu
    dac = pca.fit_transform(
        dapp_gpu).get()  # calculate the principal components
    dac = dac / np.linalg.norm(dac, axis=-1)[..., np.newaxis]

    minx = -1.1  #min(np.min(dac[:,0]), np.min(dcc1[:,0]))-.1
    maxx = 1.1  # max(np.max(dac[:,0]), np.max(dcc1[:,0]))+.1
    miny = -1.1  #min(np.min(dac[:,1]), np.min(dcc1[:,1]))-.1
    maxy = 1.1  #max(np.max(dac[:,1]), np.max(dcc1[:,1]))+.1
    '''
    minz = min(np.min(dac[:,2]), np.min(dcc[:,2]))
    maxz = max(np.max(dac[:,2]), np.max(dcc[:,2]))
    '''
    x = np.zeros_like(dac[:, 0])

    rcParams['font.sans-serif'] = 'DejaVu Sans'
    rcParams['font.size'] = 10
    rcParams['patch.linewidth'] = .5
    rcParams['figure.figsize'] = [8.0, 3.0]
    rcParams['figure.subplot.bottom'] = 0.2
    rcParams['savefig.dpi'] = 200.0
    rcParams['figure.dpi'] = 200.0

    fig = plt.figure()
    ax = fig.add_subplot(131, aspect='equal')
    ax.quiver(x,
              x,
              dcc1[:, 0],
              dcc1[:, 1],
              color=['b', 'g', 'r'],
              scale=1,
              units='xy',
              width=.02)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlim([minx, maxx])
    ax.set_ylim([miny, maxy])
    plt.title(cls[0])

    ax = fig.add_subplot(132, aspect='equal')
    ax.quiver(x,
              x,
              dcc2[:, 0],
              dcc2[:, 1],
              color=['b', 'g', 'r'],
              scale=1,
              units='xy',
              width=.02)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlim([minx, maxx])
    ax.set_ylim([miny, maxy])
    plt.title(cls[1])

    ax = fig.add_subplot(133, aspect='equal')
    ax.quiver(x,
              x,
              dac[:, 0],
              dac[:, 1],
              color=['b', 'g', 'r'],
              scale=1,
              units='xy',
              width=.02)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlim([minx, maxx])
    ax.set_ylim([miny, maxy])
    plt.title('appearance')

    l1 = mpatches.Patch(color='b', label='database')
    l2 = mpatches.Patch(color='g', label='positive')
    l3 = mpatches.Patch(color='r', label='negative')
    h = plt.legend(handles=[l1, l2, l3])
    h.get_frame().set_alpha(0.0)  # transluscent legend :D
    h.set_draggable(True)
    plt.show()