es_file = sys.argv[3] + "/es_" + sys.argv[2] + ".txt" es_epoch = sys.maxsize if os.path.isfile(es_file) == True: with open(es_file, 'r') as myfile: es_epoch = int(myfile.read()) myfile.close() return es_epoch if __name__ == "__main__": es_epoch = checkInputs() config = build_data(sys.argv[1]) config.train_id_docs.extend(config.dev_id_docs) train_data = utils.HeadData(config.train_id_docs, np.arange(len(config.train_id_docs))) test_data = utils.HeadData(config.test_id_docs, np.arange(len(config.test_id_docs))) tf.reset_default_graph() tf.set_random_seed(1) utils.printParameters(config) # ---- Training ---- config1 = tf.ConfigProto() config1.gpu_options.per_process_gpu_memory_fraction = 0.85 with tf.Session(config=config1) as sess: # saver = tf.train.import_meta_graph('model.ckpt.meta') # saver.restore(sess, 'model.ckpt') embedding_matrix = tf.get_variable('embedding_matrix', shape=config.wordvectors.shape, dtype=tf.float32, trainable=False).assign(config.wordvectors) emb_mtx = sess.run(embedding_matrix) model = tf_utils.model(config, emb_mtx, sess)
import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" gpuConfig = tf.ConfigProto(allow_soft_placement=True) gpuConfig.gpu_options.allow_growth = True if __name__ == "__main__": # checkInputs() config = build_data("./configs/CoNLL04/bio_config") train_data = utils.HeadData(config.train_id_docs, np.arange(len( config.train_id_docs))) ## build data dev_data = utils.HeadData(config.dev_id_docs, np.arange(len(config.dev_id_docs))) test_data = utils.HeadData(config.test_id_docs, np.arange(len(config.test_id_docs))) tf.reset_default_graph() tf.set_random_seed(1) utils.printParameters(config) with tf.Session(config=gpuConfig) as sess: embedding_matrix = tf.get_variable('embedding_matrix', shape=config.wordvectors.shape, dtype=tf.float32,