示例#1
0
def redeploy_api() -> str:
    api_token = connexion.request.form["api_token"]

    if auth_token(api_token):
        # Service Status Management
        tensorflow_model_server_down = True
        for proc in psutil.process_iter():
            pinfo = proc.as_dict(attrs=['pid', 'name', 'create_time'])
            if pinfo['name'] == "tensorflow_model_server":
                log("[INFO] TensorFlow model server is up", api_token)
                tensorflow_model_server_down = False
        if tensorflow_model_server_down:
            log("[INFO] Starting a new tensorflow_model_server", api_token)
            tf_server = subprocess.Popen([
                "tensorflow_model_server "
                "--rest_api_port=$REST_API_PORT "
                "--model_config_file_poll_wait_seconds=$CONFIG_FILE_POLL_SECONDS "
                "--model_config_file=$MODEL_CONFIG_FILE > $TENSORFLOW_SERVER_LOGS_FILE 2>&1"
            ],
                                         stdout=subprocess.DEVNULL,
                                         shell=True,
                                         preexec_fn=os.setsid)
        try:
            model_version = int(connexion.request.form["model_version"])
        except:
            model_version = None
        pass
        model_name = connexion.request.form["model_name"]
        append = connexion.request.form["append"]
        model_download_path = os.environ['MODEL_SAVE_PATH'] + "/" + model_name

        # Model Versioning Management
        # if model_version was not specified, it will be set by default as "the latest model_version number + 1"
        if model_version is None:
            if not os.path.exists(model_download_path):
                deployment_status = "[ERROR] There is no model stored with this name" + model_name + ". please choose one of the saved models"
            else:
                listOfFile = os.listdir(model_download_path)
                model_versions = []
                for file in listOfFile:
                    file_casted = file
                    try:
                        file_casted = int(file)
                        model_versions.append(file_casted)
                    except:
                        pass
                # check if the model directory is empty or not
                if not model_versions:
                    model_version = 1
                else:
                    model_versions.sort()
                    model_version = model_versions[-1]
                    version_path = model_download_path + "/" + str(
                        model_version)
            log(
                "[INFO] the version that will be redeployed is : " +
                str(model_version), api_token)
        else:
            version_path = model_download_path + "/" + str(model_version)
            if not os.path.isdir(version_path):
                deployment_status = "[ERROR] This model version path doesn't exist: " + version_path + ". Please choose an already uploaded model version."
                return log(deployment_status, api_token)
        # Model Deployment
        log(
            "[INFO] Redeploying the version " + str(model_version) + " of " +
            model_name, api_token)
        if append == "true":
            deployment_status = "[INFO] " + utils.append_version_model_service_config(
                model_name, version_path, model_version)
        else:
            deployment_status = "[INFO] " + utils.add_version_model_service_config(
                model_name, version_path, model_version)
        return log(deployment_status, api_token)
    else:
        return log("[ERROR] Invalid token ", api_token)
示例#2
0
def deploy_api(model_name, model_file) -> str:
    model_zip_path = os.environ['MODEL_SAVE_PATH'] + str(uuid.uuid4()) + ".zip"
    api_token = connexion.request.form["api_token"]
    model_name = connexion.request.form["model_name"]
    append = connexion.request.form["append"]
    model_file = connexion.request.files["model_file"]
    model_download_path = os.environ['MODEL_SAVE_PATH'] + "/" + model_name
    download_model = True

    # if model_version is empty, model_version will be set on None
    try:
        model_version = int(connexion.request.form["model_version"])
    except:
        model_version = None
        pass

    log("[INFO] Calling deploy_api", api_token)
    if auth_token(api_token):
        # Service Status Management
        tensorflow_model_server_down = True
        for proc in psutil.process_iter():
            pinfo = proc.as_dict(attrs=['pid', 'name', 'create_time'])
            if pinfo['name'] == "tensorflow_model_server":
                log("[INFO] TensorFlow model server is already up", api_token)
                tensorflow_model_server_down = False
        if tensorflow_model_server_down:
            log("[INFO] Starting a new tensorflow_model_server", api_token)
            tf_server = subprocess.Popen([
                "tensorflow_model_server "
                "--rest_api_port=$REST_API_PORT "
                "--model_config_file_poll_wait_seconds=$CONFIG_FILE_POLL_SECONDS "
                "--model_config_file=$MODEL_CONFIG_FILE > $TENSORFLOW_SERVER_LOGS_FILE 2>&1"
            ],
                                         stdout=subprocess.DEVNULL,
                                         shell=True,
                                         preexec_fn=os.setsid)

        # Model Versioning Management
        # if model_version was not specified, it will be set by default as "the latest model_version number + 1"
        if model_version is None:
            if not os.path.exists(model_download_path):
                os.makedirs(model_download_path)
                model_version = 1
            else:
                listOfFile = os.listdir(model_download_path)
                model_versions = []
                for file in listOfFile:
                    file_casted = file
                    try:
                        file_casted = int(file)
                        model_versions.append(file_casted)
                    except:
                        pass
                # check if the model directory is empty or not
                if not model_versions:
                    model_version = 1
                else:
                    model_versions.sort()
                    model_version = model_versions[-1] + 1
            log("[INFO] new version to be deployed : " + str(model_version),
                api_token)
        else:
            version_path = model_download_path + "/" + str(model_version)
            if os.path.isdir(version_path):
                download_model = False
                log(
                    "[WARN] This model version already exists. \
                    The uploaded model version will be ignored. The existing version will be deployed.",
                    api_token)

        # Model Downloading
        # if the specified model version doesn't exist in the directory,
        # the zip file uploaded by the user will be downloaded
        if download_model:
            version_path = model_download_path + "/" + str(model_version)
            log("[INFO] Downloading the new model in " + str(version_path),
                api_token)
            model_file.save(model_zip_path)
            with zipfile.ZipFile(model_zip_path, "r") as zip_ref:
                zip_ref.extractall(version_path)
                os.remove(model_zip_path)

        # Model Deployment
        log(
            "[INFO] Deploying the version " + str(model_version) + " of " +
            model_name, api_token)
        if append == "true":
            deployment_status = utils.append_version_model_service_config(
                model_name, model_download_path, model_version)
        else:
            deployment_status = utils.add_version_model_service_config(
                model_name, model_download_path, model_version)
        # print("The new tensorflow model file was deployed successfully at: ",os.environ['MODELS_PATH'], model_version)
        return log("[INFO]" + deployment_status, api_token)
    else:
        return log("[INFO] Invalid token", api_token)