示例#1
0
    def get_segment_plan(self, start_pose, waypoint_pose, time_stamp):

        start_x, start_y, start_theta = start_pose[0], start_pose[
            1], start_pose[2]
        wp_x, wp_y, wp_theta = waypoint_pose[0], waypoint_pose[
            1], waypoint_pose[2]

        # set up and publish the start pose startMsg
        startMsg = PoseWithCovarianceStamped()
        quaternion = utils.angle_to_quaternion(start_theta)
        startMsg.header.stamp = time_stamp
        startMsg.header.frame_id = "/map"
        startMsg.pose.pose.position.x = start_x
        startMsg.pose.pose.position.y = start_y
        startMsg.pose.pose.orientation = quaternion

        # set up and publish the goal pose goalMsg
        goalMsg = PoseStamped()
        quaternion = utils.angle_to_quaternion(wp_theta)
        goalMsg.header.stamp = time_stamp
        goalMsg.header.frame_id = "/map"
        goalMsg.pose.position.x = wp_x
        goalMsg.pose.position.y = wp_y
        goalMsg.pose.orientation = quaternion

        self.initial_pub.publish(startMsg)
        self.goal_pub.publish(goalMsg)
    def visualize(self):
        '''
        Publish various visualization messages.
        '''
        if not self.DO_VIZ:
            return

        if self.pose_pub.get_num_connections() > 0 and isinstance(self.inferred_pose, np.ndarray):
            # Publish the inferred pose for visualization
            ps = PoseStamped()
            ps.header = Utils.make_header("map")
            ps.pose.position.x = self.inferred_pose[0]
            ps.pose.position.y = self.inferred_pose[1]
            ps.pose.orientation = Utils.angle_to_quaternion(self.inferred_pose[2])
            self.pose_pub.publish(ps)

        if self.particle_pub.get_num_connections() > 0:
            # publish a downsampled version of the particle distribution to avoid a lot of latency
            if self.MAX_PARTICLES > self.MAX_VIZ_PARTICLES:
                # randomly downsample particles
                proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES, p=self.weights)
                # proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES)
                self.publish_particles(self.particles[proposal_indices,:])
            else:
                self.publish_particles(self.particles)

        if self.pub_fake_scan.get_num_connections() > 0 and isinstance(self.ranges, np.ndarray):
            # generate the scan from the point of view of the inferred position for visualization
            self.viz_queries[:,0] = self.inferred_pose[0]
            self.viz_queries[:,1] = self.inferred_pose[1]
            self.viz_queries[:,2] = self.downsampled_angles + self.inferred_pose[2]
            self.range_method.calc_range_many(self.viz_queries, self.viz_ranges)
            self.publish_scan(self.downsampled_angles, self.viz_ranges)
示例#3
0
  def visualize(self):
    #print 'Visualizing...'
    self.state_lock.acquire()
    self.inferred_pose = self.expected_pose()

    if isinstance(self.inferred_pose, np.ndarray):
      self.publish_tf(self.inferred_pose)
      ps = PoseStamped()
      ps.header = Utils.make_header("map")
      ps.pose.position.x = self.inferred_pose[0]
      ps.pose.position.y = self.inferred_pose[1]
      ps.pose.orientation = Utils.angle_to_quaternion(self.inferred_pose[2])    
      if(self.pose_pub.get_num_connections() > 0):
        self.pose_pub.publish(ps)
      if(self.pub_odom.get_num_connections() > 0):
        odom = Odometry()
        odom.header = ps.header
        odom.pose.pose = ps.pose
        self.pub_odom.publish(odom)

    if self.particle_pub.get_num_connections() > 0:
      if self.particles.shape[0] > self.MAX_VIZ_PARTICLES:
        # randomly downsample particles
        proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES, p=self.weights)
        # proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES)
        self.publish_particles(self.particles[proposal_indices,:])
      else:
        self.publish_particles(self.particles)
        
    if self.pub_laser.get_num_connections() > 0 and isinstance(self.sensor_model.last_laser, LaserScan):
      self.sensor_model.last_laser.header.frame_id = "/laser"
      self.sensor_model.last_laser.header.stamp = rospy.Time.now()
      self.pub_laser.publish(self.sensor_model.last_laser)
    self.state_lock.release()
示例#4
0
    def visualize(self, path, start, goal):
        '''
        Publish various visualization messages.
        '''

        #rospy.loginfo('visualizing start')
        s = PointStamped()
        s.header = Utils.make_header("/map")
        s.point.x = start[0]
        s.point.y = start[1]
        s.point.z = 0
        self.start_pub.publish(s)

        #rospy.loginfo('visualizing goal')
        g = PointStamped()
        g.header = Utils.make_header("/map")
        g.point.x = goal[0]
        g.point.y = goal[1]
        g.point.z = 0
        self.goal_pub.publish(g)

        #rospy.loginfo('visualizing path')
        p = Path()
        p.header = Utils.make_header("/map")
        for point in path:
            pose = PoseStamped()
            pose.header = Utils.make_header("/map")
            pose.pose.position.x = point[0]
            pose.pose.position.y = point[1]
            pose.pose.orientation = Utils.angle_to_quaternion(0)
            p.poses.append(pose)
        self.path_pub.publish(p)
示例#5
0
    def visualize(self):
        '''
        Publish various visualization messages.
        '''
        if not self.DO_VIZ:
            return

        if self.pose_pub.get_num_connections() > 0 and isinstance(self.inferred_pose, np.ndarray):
            # Publish the inferred pose for visualization
            ps = PoseStamped()
            ps.header = Utils.make_header("map")
            ps.pose.position.x = self.inferred_pose[0]
            ps.pose.position.y = self.inferred_pose[1]
            ps.pose.orientation = Utils.angle_to_quaternion(self.inferred_pose[2])
            self.pose_pub.publish(ps)

        if self.particle_pub.get_num_connections() > 0:
            # publish a downsampled version of the particle distribution to avoid a lot of latency
            if self.MAX_PARTICLES > self.MAX_VIZ_PARTICLES:
                # randomly downsample particles
                proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES, p=self.weights)
                # proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES)
                self.publish_particles(self.particles[proposal_indices,:])
            else:
                self.publish_particles(self.particles)

        if self.pub_fake_scan.get_num_connections() > 0 and isinstance(self.ranges, np.ndarray):
            # generate the scan from the point of view of the inferred position for visualization
            self.viz_queries[:,0] = self.inferred_pose[0]
            self.viz_queries[:,1] = self.inferred_pose[1]
            self.viz_queries[:,2] = self.downsampled_angles + self.inferred_pose[2]
            self.range_method.calc_range_many(self.viz_queries, self.viz_ranges)
            self.publish_scan(self.downsampled_angles, self.viz_ranges)
示例#6
0
    def publish_tf(self, pose, stamp=None):
        """ Publish a tf for the car. This tells ROS where the car is with respect to the map. """
        if stamp == None:
            stamp = rospy.Time.now()

        # this may cause issues with the TF tree. If so, see the below code.
        # self.pub_tf.sendTransform((pose[0],pose[1],0),tf.transformations.quaternion_from_euler(0, 0, pose[2]),
        #        stamp , "/laser", "/map")

        # also publish odometry to facilitate getting the localization pose
        if self.PUBLISH_ODOM:
            odom = Odometry()
            odom.header = Utils.make_header("/map", stamp)
            odom.pose.pose.position.x = pose[0]
            odom.pose.pose.position.y = pose[1]
            odom.pose.pose.orientation = Utils.angle_to_quaternion(pose[2])
            self.odom_pub.publish(odom)

        # return # below this line is disabled
        """
        Our particle filter provides estimates for the "laser" frame
        since that is where our laser range estimates are measure from. Thus,
        We want to publish a "map" -> "laser" transform.

        However, the car's position is measured with respect to the "base_link"
        frame (it is the root of the TF tree). Thus, we should actually define
        a "map" -> "base_link" transform as to not break the TF tree.
        """

        # Get map -> laser transform.
        map_laser_pos = np.array((pose[0], pose[1], 0))
        map_laser_rotation = np.array(
            tf.transformations.quaternion_from_euler(0, 0, pose[2]))
        # Apply laser -> base_link transform to map -> laser transform
        # This gives a map -> base_link transform
        laser_base_link_offset = (0.265, 0, 0)
        map_laser_pos -= np.dot(
            tf.transformations.quaternion_matrix(
                tf.transformations.unit_vector(map_laser_rotation))[:3, :3],
            laser_base_link_offset).T

        map_laser_pos[0] -= self.position[0]
        map_laser_pos[1] -= self.position[1]

        orientation_list = [
            self.odom_orientation.x, self.odom_orientation.y,
            self.odom_orientation.z, self.odom_orientation.w
        ]
        (roll, pitch, odom_base_link_yaw
         ) = tf.transformations.euler_from_quaternion(orientation_list)
        map_odom_yaw = pose[2] - odom_base_link_yaw

        map_odom_rotation = np.array(
            tf.transformations.quaternion_from_euler(0, 0, map_odom_yaw))

        # Publish transform
        self.pub_tf.sendTransform(map_laser_pos, map_odom_rotation, stamp,
                                  "/odom", "/map")
示例#7
0
def main():

    rospy.init_node('line_follower', anonymous=True)  # Initialize the node

    plan_relative_path = "/saved_plans/plan2"
    # load plan_array
    # load raw_plan msg (PoseArray)
    loaded_vars = pickle.load(open(CURRENT_PKG_PATH + plan_relative_path, "r"))
    plan_array = loaded_vars[0]
    # raw_plan = loaded_vars[1]

    plan_array_new = []

    total_distance = 0.0
    for i in range(len(plan_array) - 1):
        total_distance += np.sqrt(
            np.square(plan_array[i][0] - plan_array[i + 1][0]) +
            np.square(plan_array[i][1] - plan_array[i + 1][1]))

    avg_distance = total_distance / len(plan_array)

    array_len = len(plan_array)
    i = 0
    while i < array_len - 1:
        current_distance = np.sqrt(
            np.square(plan_array[i][0] - plan_array[i + 1][0]) +
            np.square(plan_array[i][1] - plan_array[i + 1][1]))
        if current_distance < avg_distance * 0.5:
            plan_array_new.append(plan_array.pop(i + 1))
            i -= 1
            array_len -= 1
        i += 1

    PA = PoseArray()  # create a PoseArray() msg
    PA.header.stamp = rospy.Time.now()  # set header timestamp value
    PA.header.frame_id = "map"  # set header frame id value
    PA.poses = []
    for pose in plan_array:
        P = Pose()
        P.position.x = float(pose[0])
        P.position.y = float(pose[1])
        P.position.z = 0
        P.orientation = utils.angle_to_quaternion(float(pose[2]))

        PA.poses.append(P)

    # visualize edited loaded plan
    PA_pub = rospy.Publisher("/LoadedPlan", PoseArray, queue_size=1)
    for i in range(0, 5):
        rospy.sleep(0.5)
        PA_pub.publish(PA)

    # save plan_array to file
    # save plan PoseArray msg to file
    file_temp = open(CURRENT_PKG_PATH + plan_relative_path + "_clean", 'w')
    pickle.dump([plan_array_new, PA], file_temp)
    file_temp.close()
示例#8
0
 def init_callback(self, init):
     rospy.loginfo("Receiving init pose: " + init.data)
     init_data = init.data.split(',')
     init_msg = PoseWithCovarianceStamped()
     init_msg.header.stamp = rospy.Time.now()
     init_msg.header.frame_id = "/map"
     init_msg.pose.pose.position.x = float(init_data[0])
     init_msg.pose.pose.position.y = float(init_data[1])
     init_msg.pose.pose.orientation = angle_to_quaternion(float(init_data[2]))
     self.pub_init.publish(init_msg)
示例#9
0
 def _simulate_odom(self, evt):
     # print "Simulate odometery..."
     pose = self.car.state.copy()
     self.odom_msg.header.stamp = rospy.Time.now()
     self.odom_msg.pose.pose.position.x = pose[0]
     self.odom_msg.pose.pose.position.y = pose[1]
     self.odom_msg.pose.pose.orientation = utils.angle_to_quaternion(
         pose[2])
     self.odom_pub.publish(self.odom_msg)
     self.odom_timer.tick()
示例#10
0
 def _cb_init(self, data):
     rospy.loginfo('Receiving init pose: ' + data.data)
     data = data.data.split(',')
     init_pose = PoseWithCovarianceStamped()
     init_pose.header.stamp = rospy.Time.now()
     init_pose.header.frame_id = 'map'
     init_pose.pose.pose.position.x = float(data[0])
     init_pose.pose.pose.position.y = float(data[1])
     init_pose.pose.pose.orientation = utils.angle_to_quaternion(
         float(data[2]))
     self.p_initpose.publish(init_pose)
示例#11
0
 def inferred_pose_map(self):
     # Publishing inferred_pose in map/pixel coordinatess
     
     if self.map_pose_pub.get_num_connections() > 0 and isinstance(self.inferred_pose, np.ndarray):
         map_inferred_pose = Utils.world_to_map_slow(self.inferred_pose[0],self.inferred_pose[1],self.inferred_pose[2],self.map_info)
         ps = PoseStamped()
         ps.header = Utils.make_header("map")
         ps.pose.position.x = map_inferred_pose[0]
         ps.pose.position.y = self.map_info.height  - map_inferred_pose[1]
         ps.pose.orientation = Utils.angle_to_quaternion(map_inferred_pose[2])
         self.map_pose_pub.publish(ps)
示例#12
0
 def publish_plan(self, plan):
     pa = PoseArray()
     pa.header.frame_id = "/map"
     for i in xrange(len(plan)):
         config = plan[i]
         pose = Pose()
         pose.position.x = config[0]
         pose.position.y = config[1]
         pose.position.z = 0.0
         pose.orientation = utils.angle_to_quaternion(config[2])
         pa.poses.append(pose)
     self.plan_pub.publish(pa)
示例#13
0
    def publish_tf(self, pose, stamp=None):
        """ Publish a tf for the car. This tells ROS where the car is with respect to the map. """
        if stamp == None:
            stamp = rospy.Time.now()

        # this may cause issues with the TF tree. If so, see the below code.
        self.pub_tf.sendTransform(
            (pose[0], pose[1], 0),
            tf.transformations.quaternion_from_euler(0, 0, pose[2]), stamp,
            "/laser", "/map")

        # also publish odometry to facilitate getting the localization pose
        if self.PUBLISH_ODOM:
            odom = Odometry()
            odom.header = Utils.make_header("/map", stamp)
            odom.pose.pose.position.x = pose[0]
            odom.pose.pose.position.y = pose[1]
            odom.pose.pose.orientation = Utils.angle_to_quaternion(pose[2])
            cov_mat = np.cov(self.particles,
                             rowvar=False,
                             ddof=0,
                             aweights=self.weights).flatten()
            odom.pose.covariance[:cov_mat.shape[0]] = cov_mat
            odom.twist.twist.linear.x = self.current_speed
            self.odom_pub.publish(odom)

        return  # below this line is disabled
        """
        Our particle filter provides estimates for the "laser" frame
        since that is where our laser range estimates are measure from. Thus,
        We want to publish a "map" -> "laser" transform.

        However, the car's position is measured with respect to the "base_link"
        frame (it is the root of the TF tree). Thus, we should actually define
        a "map" -> "base_link" transform as to not break the TF tree.
        """

        # Get map -> laser transform.
        map_laser_pos = np.array((pose[0], pose[1], 0))
        map_laser_rotation = np.array(
            tf.transformations.quaternion_from_euler(0, 0, pose[2]))
        # Apply laser -> base_link transform to map -> laser transform
        # This gives a map -> base_link transform
        laser_base_link_offset = (0.265, 0, 0)
        map_laser_pos -= np.dot(
            tf.transformations.quaternion_matrix(
                tf.transformations.unit_vector(map_laser_rotation))[:3, :3],
            laser_base_link_offset).T

        # Publish transform
        self.pub_tf.sendTransform(map_laser_pos, map_laser_rotation, stamp,
                                  "/base_link", "/map")
示例#14
0
 def print_waypoints(self, waypoints):
     WpMsg = PoseArray()
     WpMsg.header.frame_id = "/map"
     wp_plan = []
     for waypoint in waypoints:
         x = waypoints[0]
         y = waypoints[1]
         quaternion = utils.angle_to_quaternion(waypoints[2])
         wp_plan.poses.orientation = quaternion
         wp_plan.poses.pose.x = x
         wp_plan.poses.pose.y = y
         wp_plan.extend(wp_plan.poses)
     WpMsg.poses = wp_plan
     waypoint_sub.publish(WpMsg)
示例#15
0
    def update(self):
        '''
        Apply the MCL function to update particle filter state. 
        Ensures the state is correctly initialized, and acquires the state lock before proceeding.
        '''
        if self.lidar_initialized and self.odom_initialized and self.map_initialized:
            self.timer.tick()
            self.iters += 1
            t1 = time.time()

            with self.state_lock:
                scans = np.copy(self.downsampled_ranges).astype(np.float32)
                odom = np.copy(self.odometry_data)
                self.odometry_data = np.zeros(3)

                # run the MCL update algorithm
                if not self.MCL(odom, scans):
                    rospy.logwarn("skipped update")
                    return

                if np.isnan(self.weights).any():
                    rospy.logwarn(
                        "something weird happened to the particle distribution"
                    )
                    ps = Pose()
                    ps.position.x = self.inferred_pose[0]
                    ps.position.y = self.inferred_pose[1]
                    ps.orientation = Utils.angle_to_quaternion(
                        self.inferred_pose[2])
                    self.initialize_particles_pose(ps)
                    return

                # compute the expected value of the robot pose
                self.inferred_pose = self.expected_pose(self.particles)
                #rospy.loginfo(self.inferred_pose)

            t2 = time.time()

            # publish transformation frame based on inferred pose
            #rospy.loginfo("update")
            self.publish_tf(self.inferred_pose, self.last_stamp)

            # this is for tracking particle filter speed
            ips = 1.0 / (t2 - t1)
            self.smoothing.append(ips)
            #if self.iters % 10 == 0:
            #    print "iters per sec:", int(self.timer.fps()), " possible:", int(self.smoothing.mean())

            self.visualize()
示例#16
0
    def visualize(self):
        """
        Visualize the current state of the filter
           (1) Publishes a tf between the map and the laser. Necessary for visualizing the laser scan in the map
           (2) Publishes the most recent laser measurement. Note that the frame_id of this message should be '/laser'
           (3) Publishes a PoseStamped message indicating the expected pose of the car
           (4) Publishes a subsample of the particles (use self.N_VIZ_PARTICLES).
               Sample so that particles with higher weights are more likely to be sampled.
        """
        self.state_lock.acquire()
        self.inferred_pose = self.expected_pose()

        if isinstance(self.inferred_pose, np.ndarray):
            if self.PUBLISH_TF:
                self.publish_tf(self.inferred_pose)
            ps = PoseStamped()
            ps.header = utils.make_header("map")
            ps.pose.position.x = self.inferred_pose[0]
            ps.pose.position.y = self.inferred_pose[1]
            ps.pose.orientation = utils.angle_to_quaternion(
                self.inferred_pose[2])
            if self.pose_pub.get_num_connections() > 0:
                self.pose_pub.publish(ps)
            if self.pub_odom.get_num_connections() > 0:
                odom = Odometry()
                odom.header = ps.header
                odom.pose.pose = ps.pose
                self.pub_odom.publish(odom)

        if self.particle_pub.get_num_connections() > 0:
            if self.particles.shape[0] > self.N_VIZ_PARTICLES:
                # randomly downsample particles
                proposal_indices = np.random.choice(self.particle_indices,
                                                    self.N_VIZ_PARTICLES,
                                                    p=self.weights)
                self.publish_particles(self.particles[proposal_indices, :])
            else:
                self.publish_particles(self.particles)

        if self.pub_laser.get_num_connections() > 0 and isinstance(
                self.sensor_model.last_laser, LaserScan):
            self.sensor_model.last_laser.header.frame_id = "/laser"
            self.sensor_model.last_laser.header.stamp = rospy.Time.now()
            self.pub_laser.publish(self.sensor_model.last_laser)
        self.state_lock.release()
示例#17
0
    def goal_point_pub(self, pose):
        # Publishing goal_point in map/pixel coordinatess
        # if self.map_goal_pub.get_num_connections() > 0 and not self.goal_set:
        if self.map_goal_pub.get_num_connections() > 0:
            map_goal_point = Utils.world_to_map_slow(pose.position.x,pose.position.y,Utils.quaternion_to_angle(pose.orientation),self.map_info)
            ps = PoseStamped()
            ps.header = Utils.make_header("map")
            ps.pose.position.x = map_goal_point[0]
            ps.pose.position.y = self.map_info.height - map_goal_point[1]
            ps.pose.orientation = Utils.angle_to_quaternion(map_goal_point[2])

            # ps1 = PoseStamped()
            # ps1.header = Utils.make_header("map")
            # ps1.pose.position.x = pose.position.x
            # ps1.pose.position.y = pose.position.y
            # ps1.pose.orientation = pose.orientation
            self.map_goal_pub.publish(ps)
            # self.goal_set = True
            print "goal point printed", map_goal_point
示例#18
0
    def viz_sub_cb(self, msg):
        # Create the PoseArray to publish. Will contain N poses, where the n-th pose
        # represents the last pose in the n-th trajectory
        pa = PoseArray()
        pa.header.frame_id = '/small_basement'
        pa.header.stamp = rospy.Time.now()

        # Transform the last pose of each trajectory to be w.r.t the world and insert into
        # the pose array

        for i in xrange(self.rollouts.shape[0]):
            newPose = Pose()
            newPose.position.x = self.rollouts[i, 299, 0]
            newPose.position.y = self.rollouts[i, 299, 1]
            newPose.position.z = 0.0
            newPose.orientation = utils.angle_to_quaternion(self.rollouts[i,
                                                                          299,
                                                                          2])
            pa.poses.append(newPose)

        self.viz_pub.publish(pa)
    def publish_tf(self,pose, stamp=None):
        """ Publish a tf for the car. This tells ROS where the car is with respect to the map. """
        if stamp == None:
            stamp = rospy.Time.now()

        # this may cause issues with the TF tree. If so, see the below code.
        self.pub_tf.sendTransform((pose[0],pose[1],0),tf.transformations.quaternion_from_euler(0, 0, pose[2]), 
               stamp , "/laser", "/map")

        # also publish odometry to facilitate getting the localization pose
        if self.PUBLISH_ODOM:
            odom = Odometry()
            odom.header = Utils.make_header("/map", stamp)
            odom.pose.pose.position.x = pose[0]
            odom.pose.pose.position.y = pose[1]
            odom.pose.pose.orientation = Utils.angle_to_quaternion(pose[2])
            self.odom_pub.publish(odom)
        
        return # below this line is disabled

        """
        Our particle filter provides estimates for the "laser" frame
        since that is where our laser range estimates are measure from. Thus,
        We want to publish a "map" -> "laser" transform.

        However, the car's position is measured with respect to the "base_link"
        frame (it is the root of the TF tree). Thus, we should actually define
        a "map" -> "base_link" transform as to not break the TF tree.
        """

        # Get map -> laser transform.
        map_laser_pos = np.array( (pose[0],pose[1],0) )
        map_laser_rotation = np.array( tf.transformations.quaternion_from_euler(0, 0, pose[2]) )
        # Apply laser -> base_link transform to map -> laser transform
        # This gives a map -> base_link transform
        laser_base_link_offset = (0.265, 0, 0)
        map_laser_pos -= np.dot(tf.transformations.quaternion_matrix(tf.transformations.unit_vector(map_laser_rotation))[:3,:3], laser_base_link_offset).T

        # Publish transform
        self.pub_tf.sendTransform(map_laser_pos, map_laser_rotation, stamp , "/base_link", "/map")
示例#20
0
    def viz_sub_cb(self, msg):
        # Create the PoseArray to publish. Will contain N poses, where the n-th pose
        # represents the last pose in the n-th trajectory
        # PP - get current pose from mgs
        cur_pose = np.array([
            msg.pose.position.x, msg.pose.position.y,
            utils.quaternion_to_angle(msg.pose.orientation)
        ])

        pa = PoseArray()
        pa.header.frame_id = '/map'
        pa.header.stamp = rospy.Time.now()

        # Transform the last pose of each trajectory to be w.r.t the world and insert into
        for i in range(self.rollouts.shape[0]):

            # PP - below code is similar to code in line_follower for transformation
            trans_mat = [cur_pose[0], cur_pose[1]]
            rot_mat = utils.rotation_matrix(cur_pose[2])

            arrow_pose = (self.rollouts[i][-1][0], self.rollouts[i][-1][1])
            arrow_pose = np.reshape(arrow_pose, (2, 1))

            trans_mat = np.reshape(trans_mat, (2, 1))

            arrow_wrt_cur_pose = rot_mat * arrow_pose + trans_mat  # co ordinate transformation

            # create Pose to add in PoseArray
            pose = Pose()
            pose.position.x = arrow_wrt_cur_pose[0]
            pose.position.y = arrow_wrt_cur_pose[1]
            pose.position.z = 0
            pose.orientation = utils.angle_to_quaternion(
                self.rollouts[i][-1][2] +
                cur_pose[2])  # PP - is ths correct? verify with Patrick

            #print last_pose_in_traj
            pa.poses.append(pose)

        self.viz_pub.publish(pa)
示例#21
0
    def viz_sub_cb(self, msg):
        pa = PoseArray()
        pa.header.frame_id = '/map'
        pa.header.stamp = rospy.Time.now()

        trans = np.array([msg.pose.position.x, msg.pose.position.y]).reshape(
            (2, 1))
        car_yaw = utils.quaternion_to_angle(msg.pose.orientation)
        rot_mat = utils.rotation_matrix(car_yaw)
        for i in xrange(self.rollouts.shape[0]):
            robot_config = self.rollouts[i, -1, 0:2].reshape(2, 1)
            map_config = rot_mat * robot_config + trans
            map_config.flatten()
            pose = Pose()
            pose.position.x = map_config[0]
            pose.position.y = map_config[1]
            pose.position.z = 0.0
            pose.orientation = utils.angle_to_quaternion(self.rollouts[i, -1,
                                                                       2] +
                                                         car_yaw)
            pa.poses.append(pose)
        self.viz_pub.publish(pa)
示例#22
0
    def visualize(self):
        '''
        Publish various visualization messages.
        '''
        if not self.DO_VIZ:
            return

        if self.pose_pub.get_num_connections() > 0 and isinstance(
                self.inferred_pose, np.ndarray):
            ps = PoseStamped()
            ps.header = Utils.make_header("map")
            ps.pose.position.x = self.inferred_pose[0]
            ps.pose.position.y = self.inferred_pose[1]
            ps.pose.orientation = Utils.angle_to_quaternion(
                self.inferred_pose[2])
            self.pose_pub.publish(ps)
            if self.iters % 10 == 0:
                self.path.header = ps.header
                self.path.poses.append(ps)
                self.path_pub.publish(self.path)

        if self.particle_pub.get_num_connections() > 0:
            if self.MAX_PARTICLES > self.MAX_VIZ_PARTICLES:
                # randomly downsample particles
                proposal_indices = np.random.choice(self.particle_indices,
                                                    self.MAX_VIZ_PARTICLES,
                                                    p=self.weights)
                # proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES)
                self.publish_particles(self.particles[proposal_indices, :])
            else:
                self.publish_particles(self.particles)

        if self.pub_fake_scan.get_num_connections() > 0 and isinstance(
                self.sensor_model.particle_scans, np.ndarray):
            # generate the scan from the point of view of the inferred position for visualization
            inferred_scans = self.sensor_model.get_scans(
                self.inferred_pose[None, :])
            self.publish_scan(self.downsampled_angles, inferred_scans[0, :])
示例#23
0
  def publish_tf(self, pose, stamp=None):
    """
    Publish a tf from map to inferred_scan_frame.
    http://wiki.ros.org/tf/Tutorials/Adding%20a%20frame%20(Python)
    """
    # Publish the tf from map to inferred_scan_frame.
    self.pub_tf.sendTransform((pose[0], pose[1], 0.0),
                              tf.transformations.quaternion_from_euler(0, 0, pose[2]),
                              stamp,
                              "inferred_scan_frame",
                              "map")

    # Need to account for constant offset from laser frame to base_link.
    self.pub_tf.sendTransform((-0.265, 0.0, 0),
                              tf.transformations.quaternion_from_euler(0, 0, 0),
                              stamp,
                              "inferred_base_link",
                              "inferred_scan_frame")

    self.pub_tf.sendTransform((0, 0, 0),
                              tf.transformations.quaternion_from_euler(0, 0, 0),
                              stamp,
                              "base_link",
                              "inferred_base_link")

    # Also publish the inferred pose as an odometry message in the map frame.
    odom = Odometry()
    odom.header = Utils.make_header("/map", stamp)
    odom.pose.pose.position.x = pose[0]
    odom.pose.pose.position.y = pose[1]
    odom.pose.pose.orientation = Utils.angle_to_quaternion(pose[2])
    ground_truth_x = self.rel_odom_pose.pose.position.x
    ground_truth_y = self.rel_odom_pose.pose.position.y
    delta = ((pose[0]-ground_truth_x - math.cos(pose[2]) * 0.265)**2 + (pose[1]-ground_truth_y - math.sin(pose[2]) * 0.265)**2)**0.5
    self.odom_pub.publish(odom)
    self.ground_truth_delta.publish(delta)
示例#24
0
    def timer_cb(self, event):
        now = rospy.Time.now()

        # Publish a tf between map and odom if one does not already exist
        # Otherwise, get the most recent tf between map and odom
        self.cur_map_to_odom_lock.acquire()
        try:
            tmp_trans, tmp_rot = self.transformer.lookupTransform(
                "/odom", "/map", rospy.Time(0))
            self.cur_map_to_odom_trans[0] = tmp_trans[0]
            self.cur_map_to_odom_trans[1] = tmp_trans[1]
            self.cur_map_to_odom_rot = (
                tf.transformations.euler_from_quaternion(tmp_rot))[2]

            if tmp_trans[2] == -0.0001:
                self.br.sendTransform(
                    (
                        self.cur_map_to_odom_trans[0],
                        self.cur_map_to_odom_trans[1],
                        0.0001,
                    ),
                    tf.transformations.quaternion_from_euler(
                        0, 0, self.cur_map_to_odom_rot),
                    now,
                    "/odom",
                    "/map",
                )

        except Exception:
            self.br.sendTransform(
                (self.cur_map_to_odom_trans[0], self.cur_map_to_odom_trans[1],
                 0.0001),
                tf.transformations.quaternion_from_euler(
                    0, 0, self.cur_map_to_odom_rot),
                now,
                "/odom",
                "/map",
            )
        self.cur_map_to_odom_lock.release()

        # Get the time since the last update
        if self.last_stamp is None:
            self.last_stamp = now
        dt = (now - self.last_stamp).to_sec()

        # Add noise to the speed
        self.last_speed_lock.acquire()
        v = self.last_speed + np.random.normal(
            loc=self.SPEED_OFFSET * self.last_speed,
            scale=self.SPEED_NOISE,
            size=1)
        self.last_speed_lock.release()

        # Add noise to the steering angle
        self.last_steering_angle_lock.acquire()
        delta = self.last_steering_angle + np.random.normal(
            loc=self.STEERING_ANGLE_OFFSET * self.last_steering_angle,
            scale=self.STEERING_ANGLE_NOISE,
            size=1,
        )
        self.last_steering_angle_lock.release()

        self.cur_odom_to_base_lock.acquire()

        # Apply kinematic car model to the previous pose
        new_pose = np.array(
            [
                self.cur_odom_to_base_trans[0],
                self.cur_odom_to_base_trans[1],
                self.cur_odom_to_base_rot,
            ],
            dtype=np.float,
        )
        if np.abs(delta) < 1e-2:
            # Changes in x, y, and theta
            dtheta = 0
            dx = v * np.cos(self.cur_odom_to_base_rot) * dt
            dy = v * np.sin(self.cur_odom_to_base_rot) * dt

            # New joint values
            joint_left_throttle = v * dt / self.CAR_WHEEL_RADIUS
            joint_right_throttle = v * dt / self.CAR_WHEEL_RADIUS
            joint_left_steer = 0.0
            joint_right_steer = 0.0

        else:
            # Changes in x, y, and theta
            tan_delta = np.tan(delta)
            dtheta = ((v / self.CAR_LENGTH) * tan_delta) * dt
            dx = (self.CAR_LENGTH /
                  tan_delta) * (np.sin(self.cur_odom_to_base_rot + dtheta) -
                                np.sin(self.cur_odom_to_base_rot))
            dy = (self.CAR_LENGTH / tan_delta) * (
                -1 * np.cos(self.cur_odom_to_base_rot + dtheta) +
                np.cos(self.cur_odom_to_base_rot))

            # New joint values
            # Applt kinematic car model to compute wheel deltas
            h_val = (self.CAR_LENGTH / tan_delta) - (self.CAR_WIDTH / 2.0)
            joint_outer_throttle = (((self.CAR_WIDTH + h_val) /
                                     (0.5 * self.CAR_WIDTH + h_val)) * v * dt /
                                    self.CAR_WHEEL_RADIUS)
            joint_inner_throttle = (((h_val) /
                                     (0.5 * self.CAR_WIDTH + h_val)) * v * dt /
                                    self.CAR_WHEEL_RADIUS)
            joint_outer_steer = np.arctan2(self.CAR_LENGTH,
                                           self.CAR_WIDTH + h_val)
            joint_inner_steer = np.arctan2(self.CAR_LENGTH, h_val)

            # Assign joint values according to whether we are turning left or right
            if (delta) > 0.0:
                joint_left_throttle = joint_inner_throttle
                joint_right_throttle = joint_outer_throttle
                joint_left_steer = joint_inner_steer
                joint_right_steer = joint_outer_steer

            else:
                joint_left_throttle = joint_outer_throttle
                joint_right_throttle = joint_inner_throttle
                joint_left_steer = joint_outer_steer - np.pi
                joint_right_steer = joint_inner_steer - np.pi

        # Apply kinematic model updates and noise to the new pose
        new_pose[0] += (dx + np.random.normal(
            loc=self.FORWARD_OFFSET, scale=self.FORWARD_FIX_NOISE,
            size=1) + np.random.normal(
                loc=0.0, scale=np.abs(v) * self.FORWARD_SCALE_NOISE, size=1))
        new_pose[1] += (
            dy + np.random.normal(
                loc=self.SIDE_OFFSET, scale=self.SIDE_FIX_NOISE, size=1) +
            np.random.normal(
                loc=0.0, scale=np.abs(v) * self.SIDE_SCALE_NOISE, size=1))
        new_pose[2] += dtheta + np.random.normal(
            loc=self.THETA_OFFSET, scale=self.THETA_FIX_NOISE, size=1)

        new_pose[2] = self.clip_angle(new_pose[2])

        # Compute the new pose w.r.t the map in meters
        new_map_pose = np.zeros(3, dtype=np.float)
        new_map_pose[0] = self.cur_map_to_odom_trans[0] + (
            new_pose[0] * np.cos(self.cur_map_to_odom_rot) -
            new_pose[1] * np.sin(self.cur_map_to_odom_rot))
        new_map_pose[1] = self.cur_map_to_odom_trans[1] + (
            new_pose[0] * np.sin(self.cur_map_to_odom_rot) +
            new_pose[1] * np.cos(self.cur_map_to_odom_rot))
        new_map_pose[2] = self.cur_map_to_odom_rot + new_pose[2]

        # Get the new pose w.r.t the map in pixels
        if self.map_info is not None:
            new_map_pose = utils.world_to_map(new_map_pose, self.map_info)

        # Update the pose of the car if either bounds checking is not enabled,
        # or bounds checking is enabled but the car is in-bounds
        new_map_pose_x = int(new_map_pose[0] + 0.5)
        new_map_pose_y = int(new_map_pose[1] + 0.5)
        if self.permissible_region is None or (
                new_map_pose_x >= 0
                and new_map_pose_x < self.permissible_region.shape[1]
                and new_map_pose_y >= 0
                and new_map_pose_y < self.permissible_region.shape[0] and
                self.permissible_region[new_map_pose_y, new_map_pose_x] == 1):
            # Update pose of base_footprint w.r.t odom
            self.cur_odom_to_base_trans[0] = new_pose[0]
            self.cur_odom_to_base_trans[1] = new_pose[1]
            self.cur_odom_to_base_rot = new_pose[2]

            # Update joint values
            self.joint_msg.position[0] += joint_left_throttle
            self.joint_msg.position[1] += joint_right_throttle
            self.joint_msg.position[2] += joint_left_throttle
            self.joint_msg.position[3] += joint_right_throttle
            self.joint_msg.position[4] = joint_left_steer
            self.joint_msg.position[5] = joint_right_steer

            # Clip all joint angles
            for i in range(len(self.joint_msg.position)):
                self.joint_msg.position[i] = self.clip_angle(
                    self.joint_msg.position[i])

        # Publish the tf from odom to base_footprint
        self.br.sendTransform(
            (self.cur_odom_to_base_trans[0], self.cur_odom_to_base_trans[1],
             0.0),
            tf.transformations.quaternion_from_euler(
                0, 0, self.cur_odom_to_base_rot),
            now,
            "base_footprint",
            "odom",
        )

        # Publish the joint states
        self.joint_msg.header.stamp = now
        self.cur_joints_pub.publish(self.joint_msg)

        self.last_stamp = now

        self.cur_odom_to_base_lock.release()

        # Publish current state as a PoseStamped topic
        cur_pose = PoseStamped()
        cur_pose.header.frame_id = "map"
        cur_pose.header.stamp = now
        cur_pose.pose.position.x = (self.cur_odom_to_base_trans[0] +
                                    self.cur_map_to_odom_trans[0])
        cur_pose.pose.position.y = (self.cur_odom_to_base_trans[1] +
                                    self.cur_map_to_odom_trans[1])
        cur_pose.pose.position.z = 0.0
        rot = self.cur_odom_to_base_rot + self.cur_map_to_odom_rot
        cur_pose.pose.orientation = utils.angle_to_quaternion(rot)
        self.state_pub.publish(cur_pose)
示例#25
0
    def publish_waypoints_viz(self):
        green_color = ColorRGBA()
        green_color.r = 0.0
        green_color.g = 1.0  #or 1.0
        green_color.b = 0.0
        green_color.a = 1.0

        blue_color = ColorRGBA()
        blue_color.r = 0
        blue_color.g = 0
        blue_color.b = 1.0
        blue_color.a = 1.0

        red_color = ColorRGBA()
        red_color.r = 1.0
        red_color.g = 0
        red_color.b = 0
        red_color.a = 1.0

        w_id = 0

        p_start = Marker()
        p_good = MarkerArray()
        p_bad = MarkerArray()
        p_start.header.frame_id = "map"

        #start: is a single waypoint
        config = self.start_waypoint_pose[:]

        p_start.ns = 'start_waypoint'
        p_start.id = w_id
        w_id += 1
        p_start.header.stamp = rospy.Time()
        p_start.action = p_start.ADD
        p_start.scale.x = 0.35
        p_start.scale.y = 0.35
        p_start.scale.z = 0.1

        p_start.pose.position.x = config[0]
        p_start.pose.position.y = config[1]
        p_start.pose.position.z = 0.0
        p_start.type = p_start.SPHERE
        p_start.color = green_color
        p_start.pose.orientation = utils.angle_to_quaternion(0.0)

        rospy.sleep(0.5)

        self.start_waypoint_pub.publish(p_start)

        #good points: an array of waypoints
        for i in xrange(len(self.good_waypoint_pose)):
            config = self.good_waypoint_pose[i]
            marker = Marker()

            marker.ns = 'good_waypoint'
            marker.id = w_id
            w_id += 1
            marker.header.stamp = rospy.Time()
            marker.action = marker.ADD
            marker.scale.x = 0.35
            marker.scale.y = 0.35
            marker.scale.z = 0.1

            marker.header.frame_id = "map"
            marker.pose.position.x = config[0]
            marker.pose.position.y = config[1]
            marker.pose.position.z = 0.0
            marker.type = marker.SPHERE
            marker.color = blue_color
            marker.pose.orientation = utils.angle_to_quaternion(0.0)
            p_good.markers.append(marker)

        rospy.sleep(0.5)
        self.good_waypoint_pub.publish(p_good)

        #bad points
        for i in xrange(len(self.bad_waypoint_pose)):
            config = self.bad_waypoint_pose[i]
            marker = Marker()

            marker.ns = 'bad_waypoint'
            marker.id = w_id
            w_id += 1
            marker.header.stamp = rospy.Time()
            marker.action = marker.ADD
            marker.scale.x = 0.35
            marker.scale.y = 0.35
            marker.scale.z = 0.1

            marker.header.frame_id = "map"
            marker.pose.position.x = config[0]
            marker.pose.position.y = config[1]
            marker.pose.position.z = 0.0
            marker.type = marker.SPHERE
            marker.color = red_color
            marker.pose.orientation = utils.angle_to_quaternion(0.0)
            p_bad.markers.append(marker)

        rospy.sleep(0.5)
        self.bad_waypoint_pub.publish(p_bad)
示例#26
0
        queue_size=1)
    pub_init = rospy.Publisher('/initialpose',
                               PoseWithCovarianceStamped,
                               queue_size=1)

    # set initial pose
    init_x = 0.0
    init_y = 0.0
    init_heading = 0.0
    rospy.loginfo("Setting init pose: " + str((init_x, init_y, init_heading)))
    init_msg = PoseWithCovarianceStamped()
    init_msg.header.stamp = rospy.Time.now()
    init_msg.header.frame_id = "/map"
    init_msg.pose.pose.position.x = init_x
    init_msg.pose.pose.position.y = init_y
    init_msg.pose.pose.orientation = angle_to_quaternion(init_heading)

    rospy.sleep(1.0)
    pub_init.publish(init_msg)

    cmdcnt = 0
    rate = rospy.Rate(20)

    phase = 1
    period = 2 * np.pi / (np.tan(steering_angle) * velocity / tires_dist)
    print "period =", period, "secs"
    period = rospy.Duration(period)
    start_time = rospy.Time.now()

    while not rospy.is_shutdown():
        t = rospy.Time.now()
示例#27
0
    def rawPathCB(self, msg):
        ''' 1. Save raw path to raw_path_.
            2. Smooth path by gradient descending.
            3. Remove point from smoothed path which is too close to its neighborhood points ,or its neighborhood points is too close(which means there is probably a peak in path).
            4. Publish the result path
        '''
        self.raw_path_ = msg

        if not isinstance(self.map_data_, OccupancyGrid):
            print 'Received raw path, but cannot smooth when map data not received.'
            return

        diff = self.param_tolerance_ + 1
        step = 0
        np_path = self.makeNpArray(self.raw_path_)
        if not isinstance(np_path, object):
            return
        new_path = deepcopy(np_path)

        while step < self.param_iterations_:
            if diff < self.param_tolerance_:
                break

            step += 1
            diff = 0.
            pre_path = deepcopy(new_path)

            i = 1
            while i != new_path.shape[0] - 2:
                new_path[i] += self.param_alpha_ * (
                    pre_path[i] - new_path[i]) + self.param_beta_ * (
                        new_path[i - 1] + new_path[i + 1] - 2 * new_path[i])
                if self.isCollision(new_path[i], self.map_data_,
                                    self.param_margin_):
                    new_path[i] = deepcopy(pre_path[i])
                    i += 1
                    continue
                # if np.sum((new_path[i] - new_path[i - 1])**
                #           2) < self.param_min_point_dist_ or np.sum(
                #               (new_path[i] - new_path[i + 1])**
                #               2) < self.param_min_point_dist_ or np.sum(
                #                   (new_path[i - 1] - new_path[i + 1])**
                #                   2) < self.param_min_point_dist_:
                if np.sum((new_path[i - 1] - new_path[i + 1])**
                          2) < self.param_min_point_dist_:
                    new_path = np.delete(new_path, i, axis=0)
                    pre_path = np.delete(pre_path, i, axis=0)
                    i -= 1
                i += 1

            diff += np.sum((new_path - pre_path)**2)

        print 'round: ', step, '; diff: ', diff, '; origin # of points: ', len(
            self.raw_path_.poses
        ), '; result # of points: ', new_path.shape[
            0], '; # of deleted points: ', np_path.shape[0] - new_path.shape[0]

        smoothed_path = Path()
        smoothed_path.header = make_header(self.param_map_frame_)
        for i in xrange(new_path.shape[0]):
            pose = PoseStamped()
            pose.pose.position.x = new_path[i][0]
            pose.pose.position.y = new_path[i][1]
            pose.pose.position.z = 0
            pose.pose.orientation = angle_to_quaternion(0)
            smoothed_path.poses.append(pose)
        self.pub_smoothed_path_.publish(smoothed_path)
示例#28
0
def get_plan(initial_pose, goal_pose, counter):
    # Create a publisher to publish the initial pose
    init_pose_pub = rospy.Publisher(
        INIT_POSE_TOPIC, PoseWithCovarianceStamped,
        queue_size=1)  # to publish init position x=2500, y=640
    # Create a publisher to publish the goal pose
    goal_pose_pub = rospy.Publisher(
        GOAL_POSE_TOPIC, PoseStamped,
        queue_size=1)  # create a publisher for goal pose

    map_img, map_info = utils.get_map(MAP_TOPIC)  # Get and store the map
    PWCS = PoseWithCovarianceStamped(
    )  # create a PoseWithCovarianceStamped() msg
    PWCS.header.stamp = rospy.Time.now()  # set header timestamp value
    PWCS.header.frame_id = "map"  # set header frame id value

    temp_pose = utils.map_to_world(initial_pose, map_info)  # init pose
    PWCS.pose.pose.position.x = temp_pose[0]
    PWCS.pose.pose.position.y = temp_pose[1]
    PWCS.pose.pose.position.z = 0
    PWCS.pose.pose.orientation = utils.angle_to_quaternion(
        temp_pose[2]
    )  # set msg orientation to [converted to queternion] value of the yaw angle in the look ahead pose from the path
    print "Pubplishing Initial Pose to topic", INIT_POSE_TOPIC
    print "Initial ", PWCS.pose
    init_pose_pub.publish(
        PWCS
    )  # publish initial pose, now you can add a PoseWithCovariance with topic of "/initialpose" in rviz

    if counter == 0:
        for i in range(0, 5):
            init_pose_pub.publish(PWCS)
            rospy.sleep(0.5)

    print "Initial Pose Set."
    # raw_input("Press Enter")

    PS = PoseStamped()  # create a PoseStamped() msg
    PS.header.stamp = rospy.Time.now()  # set header timestamp value
    PS.header.frame_id = "map"  # set header frame id value

    temp_pose = utils.map_to_world(goal_pose, map_info)  # init pose
    PS.pose.position.x = temp_pose[
        0]  # set msg x position to value of the x position in the look ahead pose from the path
    PS.pose.position.y = temp_pose[
        1]  # set msg y position to value of the y position in the look ahead pose from the path
    PS.pose.position.z = 0  # set msg z position to 0 since robot is on the ground
    PS.pose.orientation = utils.angle_to_quaternion(temp_pose[2])
    print "Pubplishing Goal Pose to topic", GOAL_POSE_TOPIC
    print "\nGoal ", PS.pose
    goal_pose_pub.publish(PS)

    print "Goal Pose Set"
    # raw_input("Press Enter")

    print "\nwaiting for plan ", str(counter), "\n"
    raw_plan = rospy.wait_for_message(PLAN_POSE_ARRAY_TOPIC, PoseArray)
    print "\nPLAN COMPUTED! of type:", type(raw_plan)

    path_part_pub = rospy.Publisher(
        "/CoolPlan/plan" + str(counter), PoseArray,
        queue_size=1)  # create a publisher for plan lookahead follower
    for i in range(0, 4):
        path_part_pub.publish(raw_plan)
        rospy.sleep(0.4)

    return raw_plan
示例#29
0
    def publish_tf(self,pose, stamp=None):
        """ Publish a tf for the car. This tells ROS where the car is with respect to the map. """
        if stamp == None:
            stamp = rospy.Time.now()

        # this may cause issues with the TF tree. If so, see the below code.
        if not self.PUBLISH_MAP_TO_ODOM:
            self.pub_tf.sendTransform((pose[0],pose[1],0),tf.transformations.quaternion_from_euler(0, 0, pose[2]),
                   stamp , "/laser", "/map")

        # also publish odometry to facilitate getting the localization pose
        if self.PUBLISH_ODOM:
            odom = Odometry()
            odom.header = Utils.make_header("/map", stamp)
            odom.pose.pose.position.x = pose[0]
            odom.pose.pose.position.y = pose[1]
            odom.pose.pose.orientation = Utils.angle_to_quaternion(pose[2])
            self.odom_pub.publish(odom)

        """
         Our particle filter provides estimates for the "laser" frame
         since that is where our laser range estimates are measure from. Thus,
         it provides the "map" -> "laser" transform.

         However, to make this compatible with libraries such as move_base
         in the ROS navigation stack, we need to publish a "map" -> "odom" transform.
         """

        if self.PUBLISH_MAP_TO_ODOM:
            # Get map -> laser transform.
            map_laser_pos = np.array((pose[0], pose[1], 0))
            map_laser_rotation = np.array(tf.transformations.quaternion_from_euler(0, 0, pose[2]))
            # Get laser -> odom transform.
            t = self.tf_listener.getLatestCommonTime("/laser", "/odom")
            laser_odom_pos, laser_odom_quaternion = self.tf_listener.lookupTransform("/laser", "/odom", t)

            # Apply laser -> odom transform to map -> laser transform
            # This gives a map -> odom transform
            map_laser_matrix = self.tf_listener.fromTranslationRotation(map_laser_pos, map_laser_rotation)
            laser_odom_matrix = self.tf_listener.fromTranslationRotation(laser_odom_pos, laser_odom_quaternion)
            map_odom_matrix = np.dot(map_laser_matrix, laser_odom_matrix)

            map_odom_pos = map_odom_matrix[:3, 3]
            map_odom_rotation = tf.transformations.quaternion_from_matrix(map_odom_matrix)

            # Transform tolerance is the time with which to post-date the transform that is published
            # to indicate that this transform is valid into the future
            stamp = stamp + rospy.Duration.from_sec(self.TRANSFORM_TOLERANCE)

            # Publish transform
            self.pub_tf.sendTransform(map_odom_pos, map_odom_rotation, stamp, "/odom", "/map")

        return # below this line is disabled

        """
        Our particle filter provides estimates for the "laser" frame
        since that is where our laser range estimates are measure from. Thus,
        We want to publish a "map" -> "laser" transform.

        However, the car's position is measured with respect to the "base_link"
        frame (it is the root of the TF tree). Thus, we should actually define
        a "map" -> "base_link" transform as to not break the TF tree.
        """

        # Get map -> laser transform.
        map_laser_pos = np.array( (pose[0],pose[1],0) )
        map_laser_rotation = np.array( tf.transformations.quaternion_from_euler(0, 0, pose[2]) )
        # Apply laser -> base_link transform to map -> laser transform
        # This gives a map -> base_link transform
        laser_base_link_offset = (0.265, 0, 0)
        map_laser_pos -= np.dot(tf.transformations.quaternion_matrix(tf.transformations.unit_vector(map_laser_rotation))[:3,:3], laser_base_link_offset).T

        # Publish transform
        self.pub_tf.sendTransform(map_laser_pos, map_laser_rotation, stamp , "/base_link", "/map")
示例#30
0
    def publish_tf(self, pose, stamp=None):
        """ Publish a tf for the car. This tells ROS where the car is with respect to the map. """
        if stamp == None:
            stamp = rospy.Time.now()

        # also publish odometry to facilitate getting the localization pose
        if self.PUBLISH_ODOM:
            odom = Odometry()
            odom.header = Utils.make_header("map", stamp)
            odom.child_frame_id = "base_link"
            odom.pose.pose.position.x = pose[0]
            odom.pose.pose.position.y = pose[1]
            odom.pose.pose.orientation = Utils.angle_to_quaternion(pose[2])
            self.odom_pub.publish(odom)

#-------------------------- SAMUEL - added - Publish PoseWithCovariance Msg ---------------------------------
        if self.PUBLISH_POSE_COVARIANCE:
            pose_covariance = PoseWithCovarianceStamped()
            pose_covariance.header = Utils.make_header("map", stamp)
            pose_covariance.pose.pose.position.x = pose[0]
            pose_covariance.pose.pose.position.y = pose[1]
            pose_covariance.pose.pose.orientation = Utils.angle_to_quaternion(
                pose[2])
            # Copy in the Covariance Matrix, Converting from 3-D to 6-D
            temp_covariance = self.covariance_generator(
                self.expected_square_pose(), self.square_expected_pose())
            for i in range(0, 2):
                for j in range(0, 2):
                    pose_covariance.pose.covariance[6 * i +
                                                    j] = temp_covariance[i][j]
            pose_covariance.pose.covariance[6 * 5 + 5] = temp_covariance[2][2]

            self.pose_covariance_pub.publish(pose_covariance)

        # Publishing "map -> laser" TF Transform
        if self.TF_MODE == 1:
            self.pub_tf.sendTransform(
                (pose[0], pose[1], 0),
                tf.transformations.quaternion_from_euler(0, 0, pose[2]), stamp,
                "laser", "map")
        # Publishing "map -> base_link" TF Transform
        elif self.TF_MODE == 2:
            self.pub_tf.sendTransform(
                (pose[0], pose[1], 0),
                tf.transformations.quaternion_from_euler(0, 0, pose[2]), stamp,
                "base_link", "map")
        # Publishing "map -> odom" TF Transform
        elif self.TF_MODE == 3:
            try:
                # "odom -> base" transform
                (odom_base_trans, odom_base_rot) = self.tfTL.lookupTransform(
                    "odom", "base_link", rospy.Time(0))
                odom_base_trans_mat = tf.transformations.translation_matrix(
                    odom_base_trans)
                odom_base_rot_mat = tf.transformations.quaternion_matrix(
                    odom_base_rot)
                odom_base_mat = np.dot(odom_base_trans_mat, odom_base_rot_mat)
            except (tf.LookupException, tf.ConnectivityException,
                    tf.ExtrapolationException):
                return
            # "map -> base" transform
            map_base_trans = [pose[0], pose[1], 0]
            map_base_rot = tf.transformations.quaternion_from_euler(
                0, 0, pose[2])
            map_base_trans_mat = tf.transformations.translation_matrix(
                map_base_trans)
            map_base_rot_mat = tf.transformations.quaternion_matrix(
                map_base_rot)
            map_base_mat = np.dot(map_base_trans_mat, map_base_rot_mat)
            # "base -> map" transform
            base_map_mat = tf.transformations.inverse_matrix(map_base_mat)
            base_map_trans = tf.transformations.translation_from_matrix(
                base_map_mat)
            base_map_rot = tf.transformations.quaternion_from_matrix(
                base_map_mat)
            # "odom -> map" transform
            odom_map_mat = np.dot(odom_base_mat, base_map_mat)
            # "map -> odom" transform
            map_odom_mat = tf.transformations.inverse_matrix(odom_map_mat)
            map_odom_trans = tf.transformations.translation_from_matrix(
                map_odom_mat)
            map_odom_rot = tf.transformations.quaternion_from_matrix(
                map_odom_mat)
            self.pub_tf.sendTransform(map_odom_trans, map_odom_rot, stamp,
                                      "odom", "map")
        else:
            print "--------------- WARNING :  TF_MODE was wrongly selected ---------------"
#------------------------------------------------------------------------------------------------------------

        return  # below this line is disabled
        """
        Our particle filter provides estimates for the "laser" frame
        since that is where our laser range estimates are measure from. Thus,
        We want to publish a "map" -> "laser" transform.

        However, the car's position is measured with respect to the "base_link"
        frame (it is the root of the TF tree). Thus, we should actually define
        a "map" -> "base_link" transform as to not break the TF tree.
        """

        # Get map -> laser transform.
        map_laser_pos = np.array((pose[0], pose[1], 0))
        map_laser_rotation = np.array(
            tf.transformations.quaternion_from_euler(0, 0, pose[2]))
        # Apply laser -> base_link transform to map -> laser transform
        # This gives a map -> base_link transform
        laser_base_link_offset = (0, 0, 0)
        map_laser_pos -= np.dot(
            tf.transformations.quaternion_matrix(
                tf.transformations.unit_vector(map_laser_rotation))[:3, :3],
            laser_base_link_offset).T

        # Publish transform
        self.pub_tf.sendTransform(map_laser_pos, map_laser_rotation, stamp,
                                  "base_link", "map")
示例#31
0
    def measurement(self, pid, pose, pub, best_err=100000.):
        ''' Calculate the error in path pursuit, given the PID params.
            In other words, check the smoothness of the pursuit process.
        '''
        if self.trajectory.empty():
            print 'no trajectory found'
            return self.stop()
        # print "Start measurement:", pid
        # this instructs the trajectory to convert the list of waypoints into a numpy matrix
        if self.trajectory.dirty():
            self.trajectory.make_np_array()

        lookahead_point = np.ndarray(1)
        current_pose = deepcopy(pose)
        first_angle = True
        prev_angle = 0.
        int_cte = 0.
        diff_cte = 0.
        err = 0.
        pa = PoseArray()
        pa.header = utils.make_header("/map")
        step = 0
        while isinstance(lookahead_point, np.ndarray) and err < best_err:
            pre_pose = current_pose
            # step 1
            nearest_point, nearest_dist, t, i = utils.nearest_point_on_trajectory(
                current_pose[:2], self.trajectory.np_points)

            if nearest_dist < self.lookahead:
                # step 2
                lookahead_point, i2, t2 = \
                 utils.first_point_on_trajectory_intersecting_circle(current_pose[:2], self.lookahead, self.trajectory.np_points, i+t, wrap=self.wrap)
                if i2 == None:
                    lookahead_point = None
            elif nearest_dist < self.max_reacquire:
                lookahead_point = nearest_point
            else:
                lookahead_point = None

            if not isinstance(lookahead_point, np.ndarray):
                dist = (current_pose[0] - self.trajectory.points[-1][0])**2 + (
                    current_pose[1] - self.trajectory.points[-1][1])**2
                if dist > self.max_reacquire**2:
                    err += best_err + 1
                # print "Cannot get the end, stopping Car"
            else:
                # print "move_point: ", current_pose
                steering_angle = self.determine_steering_angle(
                    current_pose, lookahead_point)

                if first_angle:
                    prev_angle = steering_angle
                    int_cte = 0.
                    first_angle = False

                diff_cte = steering_angle - prev_angle
                pid_angle = pid[0] * steering_angle + pid[2] * diff_cte + pid[
                    1] * int_cte
                if np.abs(pid_angle) > self.max_angle:
                    pid_angle = self.max_angle * np.sign(pid_angle)
                # TODO: Wrong!
                # err += np.abs(pid_angle - prev_angle)
                err += nearest_dist + np.abs(prev_angle - pid_angle)

                # print "err", err, "; angle", pid_angle, "; current_pose", current_pose
                int_cte += pid_angle
                prev_angle = pid_angle

                current_pose = self.move(current_pose,
                                         self.speed,
                                         pid_angle,
                                         duration=1.0)
                dist = (current_pose[0] - pre_pose[0])**2 + (current_pose[1] -
                                                             pre_pose[1])**2
                if dist < 0.001:
                    err += (self.lookahead + 1) / (dist + 0.1)
                if self.isCollision(current_pose, self.map_data, self.margin):
                    # print "collision!"
                    err += best_err + 1
                if self.viz:
                    tmp = Pose()
                    tmp.position.x = current_pose[0]
                    tmp.position.y = current_pose[1]
                    tmp.position.z = 0.
                    tmp.orientation = utils.angle_to_quaternion(
                        current_pose[2])
                    pa.poses.append(tmp)
                    # if step % 30 == 0:
                    #     pub.publish(pa)
        if self.viz and err <= best_err:
            print 'Better pid params found.'
            pub.publish(pa)
            time.sleep(0.1)
        # print "End measurement: err", err
        return err
示例#32
0
                         AckermannDriveStamped,
                         queue_size=1)

bag_file = rospy.get_param('~bag_file')
rospy.loginfo('Bag file: ' + str(bag_file))

reverse = rospy.get_param('~reverse')
rospy.loginfo('Reverse: ' + str(reverse))

# Publish initial position
init_pose = PoseWithCovarianceStamped()
init_pose.header.stamp = rospy.Time.now()
init_pose.header.frame_id = 'map'
init_pose.pose.pose.position.x = 0.0
init_pose.pose.pose.position.y = 0.0
init_pose.pose.pose.orientation = utils.angle_to_quaternion(0.0)
rospy.sleep(1)  # publisher needs some time before it can publish
rospy.loginfo('Publish initialpose')
p_initpose.publish(init_pose)

# Publish drive info
r = rospy.Rate(20)
bag = rosbag.Bag(bag_file)
for topic, msg, t in bag.read_messages(
        topics=['/vesc/low_level/ackermann_cmd_mux/input/teleop']):
    if reverse:
        msg.drive.speed = -msg.drive.speed
    p_nav0.publish(msg)
    r.sleep()
bag.close()