required=False,
                help='1 to show region_of_interest otherwise 0, default is 0')

args = vars(ap.parse_args())

DEFAULT_PARAMS = {
    'bounding_box': (True, bool),
    'landmarks': (False, bool),
    'delaunay_triangulation': (False, bool),
    'region_of_interest': (False, bool),
}

for k in args:
    if not k in ["input", "skip_rate"]:
        args[k] = (DEFAULT_PARAMS[k][0]
                   if args[k] is None else utils.arg2bool(args[k]))
    if k == "skip_rate":
        args["skip_rate"] = (1 if args["skip_rate"] is None else int(
            args["skip_rate"]))

# Opencv Haar
haar_detector = cv2.CascadeClassifier(
    "face_detectors/haarcascade_frontalface.xml")

# Opencv LBP
lbp_detector = cv2.CascadeClassifier(
    "face_detectors/lbpcascade_frontalface.xml")

# DLIB HoG
hog_detector = dlib.get_frontal_face_detector()
ap.add_argument(
    '-he',
    '--histogram_equalization',
    required=False,
    help='1 to apply histogram_equalization otherwise 0, default 0')
ap.add_argument('-ws',
                '--window_size',
                required=False,
                help='Window size, comma separated values')

args = vars(ap.parse_args())

if args["histogram_equalization"] is None:
    hist_eq = False
else:
    hist_eq = utils.arg2bool(args["histogram_equalization"])

# DLIB HoG
hog_detector = dlib.get_frontal_face_detector()

# Opencv DNN
modelFile = "face_detectors/dnn_tf.pb"
configFile = "face_detectors/dnn_tf.pbtxt"
net = cv2.dnn.readNetFromTensorflow(modelFile, configFile)
conf_threshold = 0.7

shape_predictor = dlib.shape_predictor(
    "face_detectors/shape_predictor_68_face_landmarks.dat")


def get_model_compatible_input(gray_frame, face):
示例#3
0
args = vars(ap.parse_args())

DEFAULT_BOOLEAN_PARAMS = {
    'shuffle': True,
    'save_model': False,
    'save_architecture': False,
    'save_confusion_matrix': False,
    'save_training_history': False,
}

for k in args:
    if k in DEFAULT_BOOLEAN_PARAMS:
        args[k] = (
            DEFAULT_BOOLEAN_PARAMS[k]
            if args[k] is None else
            utils.arg2bool(args[k])
        )

DEFAULT_NONBOOLEAN_PARAMS = {
    'random_state': (42, int),
    'train_ratio': (0.85, float),
    'lr_scheduler': (None, str),
    'early_stopping': (None, str),
    'train_generator': (None, str),
    'batch_size': (24, int),
    'epochs': (50, int),
    'optim': ("adam", str),
    'learning_rate': (0.01, float),
}

for k in args: