示例#1
0
def get_abundance():
    w = 4566.52
    d = read_cog('cog.dat', w=w)
    make_linelist(w=w, id=26.0, ep=3.30, loggf=-2.164, ew=d[:, 1])
    batch(atmosphere_model='out.atm')
    os.system('MOOGSILENT > /dev/null')
    params = (5777, 4.44, 0.0, 1.0)
    m = Readmoog(params=params)
    df = m.all_table()
    return df
示例#2
0
    def make_train_inputs(self, input_seq, target_seq):
        '''This method is responsible for preparing the given sequences
           so that they can be used for training the model.'''
        inputs_, inputs_length_ = utils.batch(input_seq)
        targets_, targets_length_ = utils.batch(target_seq)

        return {
            self.encoder_inputs: inputs_,
            self.encoder_inputs_length: inputs_length_,
            self.decoder_targets: targets_,
            self.decoder_targets_length: targets_length_,
        }
def benchmark():
    global device

    get_files()
    print("Running Benchmark..")
    time = datetime.datetime.now()

    emb = load_embedding('RWSGwn.emb',
                         length_normalize=False,
                         delete_duplicates=True)
    time = print_time('Loading embedding from Disk to RAM step', time)

    emb.length_normalize()
    time = print_time(
        'Embedding length normalization step (' + CPUcolor + 'CPU' +
        RESETcolor + ')', time)

    vocab_to_search = emb.words
    for i in range(100):
        for word in vocab_to_search:
            v = emb.word_to_vector(word)
    time = print_time(
        'Searching for vocabulary step (' + CPUcolor + 'CPU' + RESETcolor +
        ')', time)

    m = emb.vectors
    M = emb.vectors

    for i_batch, mb in enumerate(batch(m, batch_size)):
        _ = matrix_dot(mb, M)

    time = print_time(
        'Matrix dot product step step ' +
        ('(' + CPUcolor + 'CPU' + RESETcolor + ')' if device == 'CPU' else
         '(' + GPUcolor + 'GPU' + RESETcolor + ')'), time)

    for i_batch, mb in enumerate(batch(m, batch_size)):
        _ = cosine_knn(mb, M, 10)

    time = print_time(
        'Searching for nearest neighbors step ' +
        ('(' + CPUcolor + 'CPU' + RESETcolor + ')' if device == 'CPU' else
         '(' + GPUcolor + 'GPU' + RESETcolor + ')'), time)

    emb.export('temp.emb')
    time = print_time('Exporting embedding from RAM to Disk step', time)

    os.remove("temp.emb")
    print()
    print("Benchmark is over.")
示例#4
0
async def main(git_url, folder_path):
    timeout = aiohttp.ClientTimeout(total=60)
    async with aiohttp.ClientSession(timeout=timeout) as session:
        await init_git(session, git_url, folder_path)

        # get blobs hashes
        proc = await asyncio.subprocess.create_subprocess_exec(
            'git',
            'ls-files',
            '--stage',
            stdout=asyncio.subprocess.PIPE,
            stderr=asyncio.subprocess.PIPE,
        )
        stdout, stderr = await proc.communicate()
        index = stdout.decode()
        hashes_paths = re.findall(r'([\w]{40})\s+\d+\s+([\w\/\.\-_#]+)', index)

        # download, decode and store files
        loop = asyncio.get_running_loop()
        for hps in batch(hashes_paths, size=20):
            tasks = [
                loop.create_task(fetch_file(hp, git_url, session))
                for hp in hps
            ]
            await asyncio.gather(*tasks)
示例#5
0
def finetune(net,
             optimizer,
             criterion,
             trainset,
             log,
             path,
             iters=100,
             epochs=None,
             batch_size=2,
             gpu=True,
             scale=0.5):
    net.train()
    bce_meter = AverageMeter()

    dir_img = 'data/train/'
    dir_mask = 'data/train_masks/'

    if epochs is None:  # Fine-tune using iterations of mini-batches
        epochs = 1
    else:  # Fine-tune using entire epochs
        iters = None

    for e in range(epochs):
        # reset the generators
        train = get_imgs_and_masks(trainset, dir_img, dir_mask, scale)

        with tqdm(total=len(trainset)) as progress_bar:
            for i, b in enumerate(batch(train, batch_size)):
                imgs = np.array([i[0] for i in b]).astype(np.float32)
                true_masks = np.array([i[1] for i in b])

                imgs = torch.from_numpy(imgs)
                true_masks = torch.from_numpy(true_masks)

                if gpu:
                    imgs = imgs.cuda()
                    true_masks = true_masks.cuda()

                masks_pred = net(imgs).squeeze()

                loss = criterion(masks_pred, true_masks)
                bce_meter.update(loss.item(), batch_size)

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=e, BCE=bce_meter.avg)

                if i == 0 and e == 0:
                    log.info("FLOPs after pruning: \n{}".format(
                        flops_count(net, imgs.shape[2:])))

                if i == iters:  # Stop finetuning after sufficient mini-batches
                    break

    log.info("Finished finetuning")
    log.info("Finetuned loss: {}".format(bce_meter.avg))
    torch.save(net.state_dict(), path)
    log.info('Saving finetuned to {}...'.format(path))
示例#6
0
 def strategy(self, x, **kwargs):
     flat_x = flatten(x)
     k = kwargs.get('k')
     # self.flat_x records the true position of shuffled data
     self.flat_x, flat_x = shuffle(self.flat_x, flat_x)
     pooling = batch(flat_x, k)
     return self.layer(pooling, r=[1, 1], op=[1, 1])
示例#7
0
 def anonymize(self, infer=False, include_rest=True):
     if infer:
         self.reader.infer_providers()
     # rather than a map of values per field we create a map of values per type - this ensures fields are consistently mapped across fields in a document as well as across values
     self.field_maps = {key: {} for key in self.provider_map.keys()}
     data = self.reader.get_data(list(self.field_maps.keys()),
                                 self.reader.suppressed_fields,
                                 include_rest)
     exclude = set(self.reader.suppressed_fields)
     count = 0
     file_name = "documents-%s"
     i = 0
     for batchiter in utils.batch(data, 100000):
         tmp = []
         for item in batchiter:
             if include_rest:
                 tmp.append(
                     json.dumps(
                         self.__anon_doc_include_all(
                             item, self.reader.masked_fields, exclude)))
             else:
                 tmp.append(
                     json.dumps(
                         self.__anon_doc(item, self.reader.masked_fields,
                                         exclude)))
         self.writer.write_data(tmp, file_name=file_name % i)
         count += len(tmp)
         logging.info(f"{count} documents complete")
         i += 1
示例#8
0
    def forward(self, jets):
        levels, children, n_inners, contents = batch(jets)
        n_levels = len(levels)
        embeddings = []

        for i, nodes in enumerate(levels[::-1]):
            j = n_levels - 1 - i
            inner = nodes[:n_inners[j]]
            outer = nodes[n_inners[j]:]
            u_k = self.fc_u(contents[j])
            u_k = self.activation(u_k)  ##eq(3) in Louppe's paper

            if len(inner) > 0:
                zero = torch.zeros(1).long()
                one = torch.ones(1).long()
                if torch.cuda.is_available():
                    zero = zero.cuda()
                    one = one.cuda()
                h_L = embeddings[-1][children[inner, zero]]
                h_R = embeddings[-1][children[inner, one]]

                h = torch.cat((h_L, h_R, u_k[:n_inners[j]]), 1)
                h = self.fc_h(h)
                h = self.activation(h)
                embeddings.append(torch.cat((h, u_k[n_inners[j]:]), 0))
            else:
                embeddings.append(u_k)

        return embeddings[-1].view((len(jets), -1))
示例#9
0
 def get_feed_data(self,
                   x,
                   t,
                   y,
                   p=None,
                   e=None,
                   class_weights=None,
                   is_training=True):
     x_m, x_sizes, xwordm, pm = utils.batch_posmask(x, p)
     t_m, t_sizes, twordm = utils.batch(t)
     fd = {
         self.inputs: x_m,
         self.targets: t_m,
         self.text_word_lengths: x_sizes,
         self.target_word_lengths: t_sizes,
         self.textwm: xwordm,
         self.targetwm: twordm,
         self.posmask: pm
     }
     if y is not None:
         fd[self.labels] = y
     if e is not None:
         fd[self.embedding_matrix] = e,
     fd[self.is_training] = is_training
     return fd
示例#10
0
def train(hp, dataset, ops):
    (train_x, train_y), (test_x, test_y) = dataset
    (model, trainer, saver, init_ops) = ops

    with tf.Session(config=utils.tf_config(ALLOW_GPU_MEM_GROWTH)) as sess:
        # Initialize parameters and create summary writer
        best_acc = 0.
        sess.run(init_ops)
        hp['save_dir'] = utils.replace_dir(hp['save_dir'])
        summary_writer = tf.summary.FileWriter(hp['save_dir'], sess.graph)

        for epoch in range(hp['epochs']):
            print('\n' + '-' * 80 + '\nEpoch %03d/%03d' % (epoch + 1, hp['epochs']))
            # Train and evaluate model
            train_loss = 0
            for step, batch_size, (batch_x, batch_y) in utils.batch(hp['batch_size'], train_x, train_y, shuffle=True):
                if hp['extended_summary'] and step == 0 and epoch % EXTENDED_SUMMARY_EVAL_PERIOD == 0:
                    loss, summary = trainer.fit(sess, batch_x, batch_y, extended_summary=True)
                    summary_writer.add_summary(summary, global_step=epoch)
                else:
                    loss = trainer.fit(sess, batch_x, batch_y)
                train_loss += loss * batch_size / len(train_x)
            validloss, validacc = _valid(trainer, sess, test_x, test_y, hp)
            print('\ttrain_loss=%2.5f\tvalid_loss=%2.5f\tvalid_acc=%3.4f' % (train_loss, validloss, validacc))
            # Summaries metrics
            utils.add_summary_values(summary_writer, global_step=epoch, train_loss=train_loss, validloss=validloss, validacc=validacc)
            # Save model if accuracy improvement
            if validacc > best_acc:
                print('\tBest accuracy encountered so far, saving model...')
                best_acc = validacc
                saver.save(sess, hp['save_dir'])
    return best_acc
示例#11
0
def _valid(trainer, sess, test_x, test_y, hp):
    tot_loss, tot_acc = (0, 0)
    for step, batch_size, (batch_x, batch_y) in utils.batch(hp['batch_size'], test_x, test_y):
        probs, classes, loss = trainer.evaluate(sess, batch_x, batch_y)
        tot_acc += np.sum(np.equal(classes, batch_y)) / len(test_x)
        tot_loss += loss * batch_size / len(test_x)
    return (tot_loss, tot_acc)
示例#12
0
    def make_inference_inputs(self, input_seq):
        '''This method is responsible for preparing the given sequences
           so that they can be used for inference using the model.'''
        inputs_, inputs_length_ = utils.batch(input_seq)

        return {
            self.encoder_inputs: inputs_,
            self.encoder_inputs_length: inputs_length_,
        }
示例#13
0
def train_one_epoch(df,
                    batch_size,
                    optimizer,
                    text_encoder,
                    meta_model,
                    counts_model,
                    multimode_model,
                    train_text_encoder=False,
                    repeat_first_batch=False,
                    binary_classification=True):
    """Trains(feedforward and backward) the model for one step and returns
    useful metrics

    Args:
        dataset (utils.Dataset): Dataset object
        epoch (int): Current epoch number
        model (tf.keras.Model): Model object
        optimizer (tf.keras.optimizers): Description

    Returns:
        TYPE: multiclass mutlilabel metrics

    Raises:
        SfirstIteration: When the Dataset batch iterator is exhausted
    """
    train_ds = utils.batch(df,
                           batch_size,
                           repeat_first_batch=repeat_first_batch)
    # step = 0
    losses = []
    # weighted_f1s = []
    accuracies = []
    # # hamming_lossees = []
    # precisions = []
    # recalls = []
    # exact_match_scores = []
    try:
        while True:
            statements_tf, justifications_tf, meta_tf, counts_tf, \
                binary_labels_tf, labels_tf = next(train_ds)

            if binary_classification:
                _labels = binary_labels_tf
            else:
                _labels = labels_tf

            loss, accuracy = train_one_step(
                optimizer, text_encoder, meta_model, counts_model,
                multimode_model, statements_tf, justifications_tf, meta_tf,
                counts_tf, _labels, train_text_encoder, binary_classification)

            losses.append(loss.numpy())
            accuracies.append(accuracy)

    except StopIteration:
        return np.mean(losses), np.mean(accuracy)
示例#14
0
    def make_train_inputs(self, input_seq, target_seq):
        max_input_length = self.cfg.get('max_input_length')
        max_output_length = self.cfg.get('max_output_length')

        input_seq_batched, _ = utils.batch(
            input_seq, max_sequence_length=max_input_length)
        target_seq_batched, _ = utils.batch(
            target_seq, max_sequence_length=max_output_length)

        feed_dict = {
            self.encoder_inputs[t]: input_seq_batched[t]
            for t in range(max_input_length)
        }
        feed_dict.update({
            self.labels[t]: target_seq_batched[t]
            for t in range(max_output_length)
        })

        feed_dict[self.keep_prob] = 1.0

        return feed_dict
def data_loader(args):
    train_data, train_labels = utils.get_raw_data(args.train_file)         # 获取一堆句子构成的列表
    val_data, val_labels = utils.get_raw_data(args.dev_file)

    args.catogories = ['EnterSports', 'Military', 'Economics', 'Technology', 'Government']
    args.cat_dict = dict(zip(args.catogories, range(len(args.catogories))))

    word_vocab, num_total_words = utils.build_dict(train_data)

    trainlabels_to_idx = [args.cat_dict[label] for label in train_labels]
    vallabels_to_idx = [args.cat_dict[label] for label in val_labels]

    train_data, train_labels = utils.encode(train_data, trainlabels_to_idx, word_vocab)
    val_data, val_labels = utils.encode(val_data, vallabels_to_idx, word_vocab)

    train_data = utils.pad_features(train_data, max_len=args.max_features)
    val_data = utils.pad_features(val_data, max_len=args.max_features)

    train_set = utils.batch(train_data.copy(), train_labels.copy(), args.batch_size)
    val_set = utils.batch(val_data.copy(), val_labels.copy(), args.batch_size)

    return train_set, val_set, num_total_words
示例#16
0
def _get_sentence_embeddings(description, embed_batch_size=10):
    embeddings_list = []

    sentences = [
        re.sub('\[\d+\]', '', sent).strip().lower()
        for sent in sent_tokenize(description)
    ]

    for sentence_batch in batch(sentences, embed_batch_size):
        embeddings = embed_sentences(sentence_batch)
        embeddings_list.append(embeddings)

    return torch.cat(embeddings_list)
示例#17
0
    def anonymize(self, infer=False, include_rest=False):
        """this is the core method for anonymizing data

        it utilizes specific reader and writer class methods to retrieve and store data. in the process
        we define mappings of unmasked values to masked values, and anonymize fields using self.faker
        """

        # first, infer mappings based on indices and overwrite the config.
        if infer:
            self.reader.infer_providers()

        # next, create masking maps that will be used for lookups when anonymizing data
        self.field_maps = self.reader.create_mappings()

        for field, map in self.field_maps.items():
            for value, _ in map.items():
                mask_str = self.reader.masked_fields[field]
                if mask_str != 'infer':
                    mask = self.provider_map[mask_str]
                    map[value] = mask(value)

        # get generator object from reader
        total = self.reader.get_count()
        logging.info("total number of records {}...".format(total))

        data = self.reader.get_data(list(self.field_maps.keys()),
                                    self.reader.suppressed_fields,
                                    include_rest)

        # batch process the data and write out to json in chunks
        count = 0
        for batchiter in utils.batch(data, 10000):
            tmp = []
            for item in batchiter:
                bulk = {
                    "index": {
                        "_index": item.meta['index'],
                        "_type": 'doc'
                    }
                }
                tmp.append(json.dumps(bulk))
                item = utils.flatten_nest(item.to_dict())
                for field, v in item.items():
                    if self.field_maps[field]:
                        item[field] = self.field_maps[field][item[field]]
                tmp.append(json.dumps(utils.flatten_nest(item)))
            self.writer.write_data(tmp)
            count += len(tmp) / 2  # There is a bulk row for every document
            logging.info("{} % complete...".format(count / total * 100))
示例#18
0
    def make_inference_inputs(self, input_seq):
        '''This method is responsible for preparing the given sequences
           so that they can be used for inference using the model.'''
        max_input_length = self.cfg.get('max_input_length')

        input_seq_batched, _ = utils.batch(
            input_seq, max_sequence_length=max_input_length)

        feed_dict = {
            self.encoder_inputs[t]: input_seq_batched[t]
            for t in range(max_input_length)
        }
        feed_dict[self.keep_prob] = 1.0

        return feed_dict
示例#19
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--embedding', required=True)
    parser.add_argument('-l', '--search_words', required=True)
    parser.add_argument('-o', '--output', required=True)
    parser.add_argument('-b', '--batch_size', type=int, default=1024)
    parser.add_argument('-k', '--num_nearest_neighbor', type=int, default=10)

    args = parser.parse_args()

    emb = load_embedding(args.embedding,
                         vocabulary=None,
                         lower=False,
                         length_normalize=True,
                         normalize_dimensionwise=False,
                         delete_duplicates=True)

    words_2_search = vocab_from_path(args.search_words)

    m = emb.words_to_matrix(words_2_search)
    M = emb.words_to_matrix(emb.words)

    nn = []

    for i_batch, mb in enumerate(batch(m, args.batch_size)):

        string = "<" + str(
            datetime.datetime.now()) + ">  " + 'Calculating nn words  ' + str(
                int(100 * (i_batch * args.batch_size) / len(m))) + '%'
        print(string, end="\r")

        result = cosine_knn(mb, M, args.num_nearest_neighbor)

        for i_result, indexes in enumerate(result):
            nn.append(["\"" + emb.words[i] + "\"" for i in indexes])

    file = open(args.output, 'w+', encoding='utf-8')

    for word, nns in zip(words_2_search, nn):
        print(word + ': ' + ' '.join(nns), file=file)
示例#20
0
 def get_feed_data(self, x, c, y=None, a=None, p= None, e=None, class_weights=None, is_training=True):
     x_m, x_sizes, xwordm = utils.batch(x)
     p_m = utils.batch_loc(p)
     #print('p',p)
     #print('p_m',p_m)
     fd = {
         self.inputs: x_m,
         self.text_word_lengths: x_sizes,
         self.textwm: xwordm,
         self.category: c
     }
     if y is not None:
         fd[self.labels] = y
     if e is not None:
         fd[self.embedding_matrix] = e
     if a is not None:
         fd[self.aspcat] = a
     if p is not None:
         fd[self.location] = p_m
     fd[self.is_training] = is_training
     return fd
示例#21
0
    x.rotate(uniform(0,360))
    x.scale(0.5)
    x.c = uniform(-1,1)
    x.f = uniform(-1,1)
    x.weight = 0.25
    x.color_speed = 0.9
    x.color = 0
    
    xf = f.add_final()
    xf.linear = 0
    xf.spherical = uniform(.5,1.5)
    xf.julia = uniform(.25,1.25)
    xf.color_speed = 0
    xf.c = uniform(0,1.5)-.75
    xf.f = uniform(0,1.5)-.75
    xf.rotate(uniform(0,360))

    f.reframe()

    return f

if __name__ == "__main__":
    lst = batch(julia_wires, 20)
    save_flames("parameters/julia_wires.flame", *lst)
        
        
    



示例#22
0
    x.weight = 7
    x.color = 1
    x.color_speed = 0.01

    # Final X
    fx = f.add_final()
    fx.a = fx.e = -uniform(0.5,1.0)
    fx.d = 0.373412
    fx.b = -fx.d
    fx.c = uniform(0,1)
    fx.f = randint(-1,1) - uniform(0,1)
    fx.rotate(uniform(0,360))
    fx.linear = 0
    setattr(fx,variation_list[this_var],1.0)
    fx.color_speed = 0
    
    
    f.highlight_power = 1.0
    f.gamma = 2
    f.brightness = 5
    f.reframe()

    return f


if __name__ == "__main__":
    lst = batch(gnarlcomplex, 20)
    save_flames("parameters/gnarlcomplex.flame", *lst)


示例#23
0
        x.wedge_sph_hole = uniform(-0.5,0.5)
        x.wedge_sph_count = 2
        x.wedge_sph_swirl = 0
    
    x.weight = uniform(0.05, 0.1)
    x.color_speed = 0.75
    x.opacity = 0
    x.color = 1
    x.animate = 1 #fiddle
    
    # randomly change post of third
    if uniform(0,1) > 0.5:
        x.post.c = uniform(-0.5, 0.5)
        x.post.f = uniform(-0.5, 0.5)
        
    f.xform[0].chaos[:] = 0,1,1
    f.xform[1].chaos[:] = 1,0,1
    f.xform[2].chaos[:] = 1,0,1
    
    f.gamma = 3
    f.brightness = 25
    f.scale = 20

    return f

if __name__ == "__main__":
    lst = batch(gnarloscope, 20)
    save_flames("parameters/gnarloscopes.flame", *lst)


示例#24
0
    x.waves2 = 1
    x.waves2_freqx = randint(-15,-1)
    x.waves2_scalex = 0.01+uniform(0,0.01)
    x.waves2_freqy = randint(14,30)
    x.waves2_scaley = 0.02+uniform(0,0.01)
    
    x.color_speed = 0.01
    
    # Final X
    fx = f.add_final()
    fx.linear = 0
    fx.a = 1.5
    fx.e = 1.5
    fx.foci = 1
    fx.color = uniform(0,1)
    fx.color_speed = 0
    
    
    f.highlight_power = 1.0
    f.gamma = 2
    f.brightness = 10
    f.scale = 20

    return f

if __name__ == "__main__":
    lst = batch(gnarlbasefoci, 20)
    save_flames("parameters/gnarlbasefoci.flame", *lst)


示例#25
0
文件: gnarl.py 项目: bobbyrward/fr0st
    x.weight = 0.5
    x.color_speed = 1
    x.color = random.uniform(0,1)
    x.animate = 1

    # Third Xform
    if random.uniform(0,1)>0.5:
        x = f.add_xform()
        x.e = 0.015; # or is it e
        x.rotate(random.uniform(-45,135))
        x.c = random.uniform(-1,1)
        x.f = random.uniform(-1,1)
        x.weight = 0.5
        x.color_speed = 1
        x.color = random.uniform(0,1)
        x.animate = 1
   
    f.scale = 9
    f.gamma = 4
    f.brightness = 35

    f.reframe()
   
    return f

if __name__ == "__main__":
    lst = batch(gnarl, 20)
    save_flames("parameters/gnarls.flame", *lst)


示例#26
0
    
    x = f.add_xform(color_speed=0.95, color=ed_color)
    x.linear = 0
    x.edisc = ed_weight
    x.c += uniform(-1,1)
    x.f += uniform(-1,1)
    x.rotate(uniform(0,360))
    
    x = f.add_xform(color_speed=0.95, color=ed_color)
    x.linear = 0
    x.julian = ed_weight
    x.julian_power = 50
    x.julian_dist = -1
    
    x = f.add_xform(color_speed = 0.95, color=ed_color)
    x.linear = 0
    x.julian = ed_weight + 0.08 + uniform(0,0.04)
    x.julian_power = 50
    x.julian_dist = -1
    
    f.scale = uniform(12,16)
    f.brightness = 35
    
    return f

if __name__ == "__main__":
    lst = batch(edisc_julian, 20)
    save_flames("parameters/edisc_julians.flame", *lst)


示例#27
0
    x = flame.add_xform(linear=0, julian=random.uniform(0.725, 1),
                        julian_power=-2, julian_dist=1,
                        color=random.uniform(0, 1),
                        color_speed=.25, weight=5)
    x.c = 0.25 + random.uniform(0, 0.2)
    x.scale(0.25)
    x.post.scale(1.5)
    
    # Add additional julians
    for i in range(random.randint(2, 5)):
        x = flame.add_xform(linear=0, color=random.uniform(0, 1))
        x.c = random.uniform(-0.5, 0.5)
        x.scale(random.uniform(0.5, .8))

        x.julian_power = (2 ** random.randrange(2, 6))
        x.julian_dist = random.randrange(-3, 3)

        if not x.julian_dist:
            x.julian_dist = random.uniform(-0.1, 0.1)
            x.julian_power /= 2
        
        x.julian = random.uniform(0.25, 4 - abs(x.julian_dist))

    return flame

if __name__ == "__main__":
    lst = batch(grand_julian, 20)
    save_flames("parameters/grand_julian.flame", *lst)
    

示例#28
0
    # Choose a random xform.  Delete it and create a new one
    # with the same weight using variations in special_vars
    # choosing 3 of them
    delx = random.randint(0,len(f.xform)-1)
    delxw = f.xform[delx].weight
    delcol = f.xform[delx].color
    
    f.xform[delx].delete()

    Xform.random(f, xv=special_vars, n=3, xw=delxw, col=delcol)

    # Add one more all-linear xform with weight 0.5
    # with the magic rotation & offset
    lastx = f.add_xform(weight=0.5, color_speed=0)

    lastx.rotate(random.uniform(rand_angle_min,rand_angle_max))
    lastx.c = random.uniform(-0.5, 0.5)
    lastx.f = random.uniform(-0.5, 0.5)

    # reframe and name the flame
    f.reframe()
    
    return f

if __name__ == "__main__":
    lst = utils.batch(lolpolpolpo, 20)
    save_flames("parameters/lolpolpolpo_batch.flame", *lst)