示例#1
0
def execute_insertion(sql, values):
    """Runs an insertion query and returns the result

    :param sql: sql query
    :param value: values for the query
    :returns: True
    """
    with closing(mysql.connector.connect(**connetion_params)) as db:
        with closing(db.cursor(dictionary=True, buffered=True)) as cursor:
            cursor.execute(sql, values)
            db.commit()
            return True
示例#2
0
def execute_selection(sql, values=None):
    """Runs a select query and returns the result

    :param sql: sql query
    :param value: values for the query
    :returns: query result
    """
    with closing(mysql.connector.connect(**connetion_params)) as db:
        with closing(db.cursor(dictionary=True, buffered=True)) as cursor:
            if values == None:
                cursor.execute(sql)
            else:
                cursor.execute(sql, [values])
            data = parse_result(cursor)
            return data
def ref_region(
    img: np.ndarray,
    selem: Any = disk(5),
    sigma: int = 3,
    opening_se: np.ndarray = np.ones((10, 10)),
    closing_se: np.ndarray = np.ones((5, 5)),
    verbose: bool = False
):
    """
    """
    
    # Perform histogram equalisation :
    _img_eq = rank.equalize(img, selem=selem)
    
    # Perform edge detection :
    _edges = canny(_img_eq, sigma=3)
    _filled = ndi.binary_fill_holes(_edges)
    
    # Morphological processing :
    _eroded = utils.closing(
        utils.opening(np.float64(_filled), opening_se), closing_se
    )
    
    if verbose:
        utils.side_by_side(img, _img_eq, title1="Original", title2="Histogram Equalised")
        #plt.title('Lol')
        utils.side_by_side(_img_eq, _filled, title1="Histogram Equalised", title2="Canny Edge Detection + Filled image")
        #plt.title('Lal')
        utils.side_by_side(_filled, _eroded, title1="Canny Edge Detection + Filled image", title2="Opening, closing")
        #plt.title('Lel')
        
    return _eroded
def closing_mask(m, img=None):
    # we give some margin
    marg = 200
    aux = np.zeros((m.shape[0] + marg*2, m.shape[1] + marg*2))
    aux[marg:marg+m.shape[0], marg:marg+m.shape[1]] = m
    
    # relative to the shape of the mask to compute closing
    val = min(m.shape)
    size = (min(int(0.1 * val), 100), min(int(0.1*val), 100))
    aux =  closing(aux, size=size)
    return aux[marg:marg+m.shape[0], marg:marg+m.shape[1]], None
示例#5
0
def darkText(img):
    """
    Generates the textboxes candidated based on BLACKHAT morphological filter.
    Works well with dark text over bright background.
    
    Parameters
    ----------
    img : ndimage to process
    
    Returns
    -------
    mask: uint8 mask with regions of interest (possible textbox candidates)
    """
    kernel = np.ones((30, 30), np.uint8) 
    img_orig = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
    
    TH = 150
    img_orig[(img_orig[:,:,0] < TH) | (img_orig[:,:,1] < TH) | (img_orig[:,:,2] < TH)] = (0,0,0)
    
    img_orig = closing(img_orig, size=(1, int(img.shape[1] / 8)))
    
    return (cv2.cvtColor(img_orig, cv2.COLOR_BGR2GRAY) != 0).astype(np.uint8)
示例#6
0
def main():
    img = cv2.imread('lena.bmp', 0)
    # img is now a 512 x 512 numpy.ndarray

    if not os.path.exists('Task-1'):
        os.makedirs('Task-1')

    if not os.path.exists('Task-2'):
        os.makedirs('Task-2')

    if not os.path.exists('Task-3'):
        os.makedirs('Task-3')

    if not os.path.exists('Task-4'):
        os.makedirs('Task-4')

    if not os.path.exists('Task-5'):
        os.makedirs('Task-5')

    # Generate and output an image with
    # additive white Gaussian noise
    # with amplitude = 10
    img_gauss_10 = generate_Gaussian_noise(img, 0, 1, 10)
    cv2.imwrite('Task-1/lena.gaussian.10.bmp', img_gauss_10)

    # Generate and output an image with
    # additive white Gaussian noise
    # with amplitude = 30
    img_gauss_30 = generate_Gaussian_noise(img, 0, 1, 30)
    cv2.imwrite('Task-1/lena.gaussian.30.bmp', img_gauss_30)

    # Generate and output an image with
    # salt-and-pepper noise with
    # threshold = 0.05
    img_sp_05 = generate_salt_and_pepper_noise(img, 0, 1, 0.05)
    cv2.imwrite('Task-2/lena.sp.05.bmp', img_sp_05)

    # Generate and output an image with
    # salt-and-pepper noise with
    # threshold = 0.1
    img_sp_10 = generate_salt_and_pepper_noise(img, 0, 1, 0.1)
    cv2.imwrite('Task-2/lena.sp.10.bmp', img_sp_10)

    # Run 3x3 box filter on the image
    # with white Gaussian noise with
    # amplitude = 10
    img_gauss_10_box_3 = box_filter(img_gauss_10, 3)
    cv2.imwrite('Task-3/lena.gaussian.10.box.3x3.bmp', img_gauss_10_box_3)

    # Run 3x3 box filter on the image
    # with white Gaussian noise with
    # amplitude = 30
    img_gauss_30_box_3 = box_filter(img_gauss_30, 3)
    cv2.imwrite('Task-3/lena.gaussian.30.box.3x3.bmp', img_gauss_30_box_3)

    # Run 3x3 box filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.05
    img_sp_05_box_3 = box_filter(img_sp_05, 3)
    cv2.imwrite('Task-3/lena.sp.05.box.3x3.bmp', img_sp_05_box_3)

    # Run 3x3 box filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.1
    img_sp_10_box_3 = box_filter(img_sp_10, 3)
    cv2.imwrite('Task-3/lena.sp.10.box.3x3.bmp', img_sp_10_box_3)

    # Run 5x5 box filter on the image
    # with white Gaussian noise with
    # amplitude = 10
    img_gauss_10_box_5 = box_filter(img_gauss_10, 5)
    cv2.imwrite('Task-3/lena.gaussian.10.box.5x5.bmp', img_gauss_10_box_5)

    # Run 5x5 box filter on the image
    # with white Gaussian noise with
    # amplitude = 30
    img_gauss_30_box_5 = box_filter(img_gauss_30, 5)
    cv2.imwrite('Task-3/lena.gaussian.30.box.5x5.bmp', img_gauss_30_box_5)

    # Run 5x5 box filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.05
    img_sp_05_box_5 = box_filter(img_sp_05, 5)
    cv2.imwrite('Task-3/lena.sp.05.box.5x5.bmp', img_sp_05_box_5)

    # Run 5x5 box filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.1
    img_sp_10_box_5 = box_filter(img_sp_10, 5)
    cv2.imwrite('Task-3/lena.sp.10.box.5x5.bmp', img_sp_10_box_5)

    # Run 3x3 median filter on the image
    # with white Gaussian noise with
    # amplitude = 10
    img_gauss_10_med_3 = median_filter(img_gauss_10, 3)
    cv2.imwrite('Task-4/lena.gaussian.10.median.3x3.bmp', img_gauss_10_med_3)

    # Run 3x3 median filter on the image
    # with white Gaussian noise with
    # amplitude = 30
    img_gauss_30_med_3 = median_filter(img_gauss_30, 3)
    cv2.imwrite('Task-4/lena.gaussian.30.median.3x3.bmp', img_gauss_30_med_3)

    # Run 3x3 median filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.05
    img_sp_05_med_3 = median_filter(img_sp_05, 3)
    cv2.imwrite('Task-4/lena.sp.05.median.3x3.bmp', img_sp_05_med_3)

    # Run 3x3 median filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.1
    img_sp_10_med_3 = median_filter(img_sp_10, 3)
    cv2.imwrite('Task-4/lena.sp.10.median.3x3.bmp', img_sp_10_med_3)

    # Run 5x5 median filter on the image
    # with white Gaussian noise with
    # amplitude = 10
    img_gauss_10_med_5 = median_filter(img_gauss_10, 5)
    cv2.imwrite('Task-4/lena.gaussian.10.median.5x5.bmp', img_gauss_10_med_5)

    # Run 5x5 median filter on the image
    # with white Gaussian noise with
    # amplitude = 30
    img_gauss_30_med_5 = median_filter(img_gauss_30, 5)
    cv2.imwrite('Task-4/lena.gaussian.30.median.5x5.bmp', img_gauss_30_med_5)

    # Run 5x5 median filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.05
    img_sp_05_med_5 = median_filter(img_sp_05, 5)
    cv2.imwrite('Task-4/lena.sp.05.median.5x5.bmp', img_sp_05_med_5)

    # Run 5x5 median filter on the image
    # with salt-and-pepper noise with
    # threshold = 0.1
    img_sp_10_med_5 = median_filter(img_sp_10, 5)
    cv2.imwrite('Task-4/lena.sp.10.median.5x5.bmp', img_sp_10_med_5)

    # Use octagon as kernel and set the orgin is at the center
    kernel = [
        [-2, -1], [-2, 0], [-2, 1],
        [-1, -2], [-1, -1], [-1, 0], [-1, 1], [-1, 2],
        [0, -2], [0, -1], [0, 0], [0, 1], [0, 2],
        [1, -2], [1, -1], [1, 0], [1, 1], [1, 2],
        [2, -1], [2, 0], [2, 1]
    ]

    # closing followed by opening on all noisy images
    img_gauss_10_close_open = opening(closing(img_gauss_10, kernel), kernel)
    img_gauss_30_close_open = opening(closing(img_gauss_30, kernel), kernel)
    img_sp_05_close_open = opening(closing(img_sp_05, kernel), kernel)
    img_sp_10_close_open = opening(closing(img_sp_10, kernel), kernel)

    cv2.imwrite('Task-5/lena.gaussian.10.close.open.bmp', img_gauss_10_close_open)
    cv2.imwrite('Task-5/lena.gaussian.30.close.open.bmp', img_gauss_30_close_open)
    cv2.imwrite('Task-5/lena.sp.05.close.open.bmp', img_sp_05_close_open)
    cv2.imwrite('Task-5/lena.sp.10.close.open.bmp', img_sp_10_close_open)

    # opening followed by closing on all noisy images
    img_gauss_10_open_close = closing(opening(img_gauss_10, kernel), kernel)
    img_gauss_30_open_close = closing(opening(img_gauss_30, kernel), kernel)
    img_sp_05_open_close = closing(opening(img_sp_05, kernel), kernel)
    img_sp_10_open_close = closing(opening(img_sp_10, kernel), kernel)

    cv2.imwrite('Task-5/lena.gaussian.10.open.close.bmp', img_gauss_10_open_close)
    cv2.imwrite('Task-5/lena.gaussian.30.open.close.bmp', img_gauss_30_open_close)
    cv2.imwrite('Task-5/lena.sp.05.open.close.bmp', img_sp_05_open_close)
    cv2.imwrite('Task-5/lena.sp.10.open.close.bmp', img_sp_10_open_close)
def closing_mask(m):
    # relative to the shape of the mask to compute closing
    val = min(m.shape)
    size = (min(int(0.1 * val), 100), min(int(0.1 * val), 100))
    return closing(m, size=size)
示例#8
0
kernel = np.ones((50, 2))
side_by_side(binaria,
             cv.morphologyEx(binaria, cv.MORPH_OPEN, kernel),
             title1='Original',
             title2=f'cv.MORPH_OPEN with Kernel {kernel.shape}')

# As Gonzalez explained in the book, an opening is nothing but an erosion followed by a dilation.
# Our custom function ```opening(image, kernel)``` yields the same result as executing ```cv.morphologyEx(image, cv.MORPH_OPEN, kernel)```

# # Closing

# In[17]:

kernel = np.ones((10, 10))
side_by_side(binaria,
             closing(binaria, kernel),
             title1='Original',
             title2=f'closing() with Kernel {kernel.shape}')

# In[18]:

kernel = np.ones((10, 10))
side_by_side(binaria,
             cv.morphologyEx(binaria, cv.MORPH_CLOSE, kernel),
             title1='Original',
             title2=f'cv.MORPH_CLOSE with Kernel {kernel.shape}')

# In[19]:

kernel = np.ones((2, 50))
side_by_side(binaria,