示例#1
0
def main(opts):
    # ===== Setup distributed =====
    distributed.init_process_group(backend='nccl', init_method='env://')
    if opts.device is not None:
        device_id = opts.device
    else:
        device_id = opts.local_rank
    device = torch.device(device_id)
    rank, world_size = distributed.get_rank(), distributed.get_world_size()
    if opts.device is not None:
        torch.cuda.set_device(opts.device)
    else:
        torch.cuda.set_device(device_id)

    # ===== Initialize logging =====
    logdir_full = f"{opts.logdir}/{opts.dataset}/{opts.name}/"
    if rank == 0:
        logger = Logger(logdir_full,
                        rank=rank,
                        debug=opts.debug,
                        summary=opts.visualize)
    else:
        logger = Logger(logdir_full,
                        rank=rank,
                        debug=opts.debug,
                        summary=False)

    logger.print(f"Device: {device}")

    checkpoint_path = f"checkpoints/{opts.dataset}/{opts.name}.pth"
    os.makedirs(f"checkpoints/{opts.dataset}", exist_ok=True)

    # ===== Setup random seed to reproducibility =====
    torch.manual_seed(opts.random_seed)
    torch.cuda.manual_seed(opts.random_seed)
    np.random.seed(opts.random_seed)
    random.seed(opts.random_seed)

    # ===== Set up dataset =====
    train_dst, val_dst = get_dataset(opts, train=True)

    train_loader = data.DataLoader(train_dst,
                                   batch_size=opts.batch_size,
                                   sampler=DistributedSampler(
                                       train_dst,
                                       num_replicas=world_size,
                                       rank=rank),
                                   num_workers=opts.num_workers,
                                   drop_last=True,
                                   pin_memory=True)
    val_loader = data.DataLoader(val_dst,
                                 batch_size=opts.batch_size,
                                 sampler=DistributedSampler(
                                     val_dst,
                                     num_replicas=world_size,
                                     rank=rank),
                                 num_workers=opts.num_workers)
    logger.info(f"Dataset: {opts.dataset}, Train set: {len(train_dst)}, "
                f"Val set: {len(val_dst)}, n_classes {opts.num_classes}")
    logger.info(f"Total batch size is {opts.batch_size * world_size}")
    # This is necessary for computing the scheduler decay
    opts.max_iter = opts.max_iter = opts.epochs * len(train_loader)

    # ===== Set up model and ckpt =====
    model = Trainer(device, logger, opts)
    model.distribute()

    cur_epoch = 0
    if opts.continue_ckpt:
        opts.ckpt = checkpoint_path
    if opts.ckpt is not None:
        assert os.path.isfile(
            opts.ckpt), "Error, ckpt not found. Check the correct directory"
        checkpoint = torch.load(opts.ckpt, map_location="cpu")
        cur_epoch = checkpoint["epoch"] + 1
        model.load_state_dict(checkpoint["model_state"])
        logger.info("[!] Model restored from %s" % opts.ckpt)
        del checkpoint
    else:
        logger.info("[!] Train from scratch")

    # ===== Train procedure =====
    # print opts before starting training to log all parameters
    logger.add_table("Opts", vars(opts))

    # uncomment if you want qualitative on val
    # if rank == 0 and opts.sample_num > 0:
    #     sample_ids = np.random.choice(len(val_loader), opts.sample_num, replace=False)  # sample idxs for visualization
    #     logger.info(f"The samples id are {sample_ids}")
    # else:
    #     sample_ids = None

    label2color = utils.Label2Color(cmap=utils.color_map(
        opts.dataset))  # convert labels to images
    denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
                               std=[0.229, 0.224, 0.225
                                    ])  # de-normalization for original images

    train_metrics = StreamSegMetrics(opts.num_classes)
    val_metrics = StreamSegMetrics(opts.num_classes)
    results = {}

    # check if random is equal here.
    logger.print(torch.randint(0, 100, (1, 1)))

    while cur_epoch < opts.epochs and not opts.test:
        # =====  Train  =====
        start = time.time()
        epoch_loss = model.train(cur_epoch=cur_epoch,
                                 train_loader=train_loader,
                                 metrics=train_metrics,
                                 print_int=opts.print_interval)
        train_score = train_metrics.get_results()
        end = time.time()

        len_ep = int(end - start)
        logger.info(
            f"End of Epoch {cur_epoch}/{opts.epochs}, Average Loss={epoch_loss[0] + epoch_loss[1]:.4f}, "
            f"Class Loss={epoch_loss[0]:.4f}, Reg Loss={epoch_loss[1]}\n"
            f"Train_Acc={train_score['Overall Acc']:.4f}, Train_Iou={train_score['Mean IoU']:.4f} "
            f"\n -- time: {len_ep // 60}:{len_ep % 60} -- ")
        logger.info(
            f"I will finish in {len_ep * (opts.epochs - cur_epoch) // 60} minutes"
        )

        logger.add_scalar("E-Loss", epoch_loss[0] + epoch_loss[1], cur_epoch)
        # logger.add_scalar("E-Loss-reg", epoch_loss[1], cur_epoch)
        # logger.add_scalar("E-Loss-cls", epoch_loss[0], cur_epoch)

        # =====  Validation  =====
        if (cur_epoch + 1) % opts.val_interval == 0:
            logger.info("validate on val set...")
            val_loss, _ = model.validate(loader=val_loader,
                                         metrics=val_metrics,
                                         ret_samples_ids=None)
            val_score = val_metrics.get_results()

            logger.print("Done validation")
            logger.info(
                f"End of Validation {cur_epoch}/{opts.epochs}, Validation Loss={val_loss}"
            )

            log_val(logger, val_metrics, val_score, val_loss, cur_epoch)

            # keep the metric to print them at the end of training
            results["V-IoU"] = val_score['Class IoU']
            results["V-Acc"] = val_score['Class Acc']

        # =====  Save Model  =====
        if rank == 0:
            if not opts.debug:
                save_ckpt(checkpoint_path, model, cur_epoch)
                logger.info("[!] Checkpoint saved.")

        cur_epoch += 1

    torch.distributed.barrier()

    # ==== TESTING =====
    logger.info("*** Test the model on all seen classes...")
    # make data loader
    test_dst = get_dataset(opts, train=False)
    test_loader = data.DataLoader(test_dst,
                                  batch_size=opts.batch_size_test,
                                  sampler=DistributedSampler(
                                      test_dst,
                                      num_replicas=world_size,
                                      rank=rank),
                                  num_workers=opts.num_workers)

    if rank == 0 and opts.sample_num > 0:
        sample_ids = np.random.choice(len(test_loader),
                                      opts.sample_num,
                                      replace=False)  # sample idxs for visual.
        logger.info(f"The samples id are {sample_ids}")
    else:
        sample_ids = None

    val_loss, ret_samples = model.validate(loader=test_loader,
                                           metrics=val_metrics,
                                           ret_samples_ids=sample_ids)
    val_score = val_metrics.get_results()
    conf_matrixes = val_metrics.get_conf_matrixes()
    logger.print("Done test on all")
    logger.info(f"*** End of Test on all, Total Loss={val_loss}")

    logger.info(val_metrics.to_str(val_score))
    log_samples(logger, ret_samples, denorm, label2color, 0)

    logger.add_figure("Test_Confusion_Matrix_Recall",
                      conf_matrixes['Confusion Matrix'])
    logger.add_figure("Test_Confusion_Matrix_Precision",
                      conf_matrixes["Confusion Matrix Pred"])
    results["T-IoU"] = val_score['Class IoU']
    results["T-Acc"] = val_score['Class Acc']
    results["T-Prec"] = val_score['Class Prec']
    logger.add_results(results)
    logger.add_scalar("T_Overall_Acc", val_score['Overall Acc'])
    logger.add_scalar("T_MeanIoU", val_score['Mean IoU'])
    logger.add_scalar("T_MeanAcc", val_score['Mean Acc'])
    ret = val_score['Mean IoU']

    logger.close()
    return ret
示例#2
0
def main():
    opts = get_argparser().parse_args()
    opts = modify_command_options(opts)

    # Set up visualization
    vis = Visualizer(port=opts.vis_port,
                     env=opts.vis_env) if opts.enable_vis else None

    if vis is not None:  # display options
        vis.vis_table("Options", vars(opts))

    os.environ['CUDA_VISIBLE_DEVICES'] = opts.gpu_id
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print("Device: %s" % device)

    # Set up random seed
    torch.manual_seed(opts.random_seed)
    torch.cuda.manual_seed(opts.random_seed)
    np.random.seed(opts.random_seed)
    random.seed(opts.random_seed)

    # Set up dataloader
    train_dst, val_dst = get_dataset(opts)
    train_loader = data.DataLoader(train_dst,
                                   batch_size=opts.batch_size,
                                   shuffle=True,
                                   num_workers=opts.num_workers)
    val_loader = data.DataLoader(
        val_dst,
        batch_size=opts.batch_size if opts.crop_val else 1,
        shuffle=False,
        num_workers=opts.num_workers)
    print("Dataset: %s, Train set: %d, Val set: %d" %
          (opts.dataset, len(train_dst), len(val_dst)))

    # Set up model
    print("Backbone: %s" % opts.backbone)
    model = DeepLabv3(num_classes=opts.num_classes,
                      backbone=opts.backbone,
                      pretrained=True,
                      momentum=opts.bn_mom,
                      output_stride=opts.output_stride,
                      use_separable_conv=opts.use_separable_conv)
    if opts.use_gn == True:
        print("[!] Replace BatchNorm with GroupNorm!")
        model = utils.convert_bn2gn(model)

    if opts.fix_bn == True:
        model.fix_bn()

    if torch.cuda.device_count() > 1:  # Parallel
        print("%d GPU parallel" % (torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
        model_ref = model.module  # for ckpt
    else:
        model_ref = model
    model = model.to(device)

    # Set up metrics
    metrics = StreamSegMetrics(opts.num_classes)

    # Set up optimizer
    decay_1x, no_decay_1x = model_ref.group_params_1x()
    decay_10x, no_decay_10x = model_ref.group_params_10x()
    optimizer = torch.optim.SGD(params=[
        {
            "params": decay_1x,
            'lr': opts.lr,
            'weight_decay': opts.weight_decay
        },
        {
            "params": no_decay_1x,
            'lr': opts.lr
        },
        {
            "params": decay_10x,
            'lr': opts.lr * 10,
            'weight_decay': opts.weight_decay
        },
        {
            "params": no_decay_10x,
            'lr': opts.lr * 10
        },
    ],
                                lr=opts.lr,
                                momentum=opts.momentum,
                                nesterov=not opts.no_nesterov)
    del decay_1x, no_decay_1x, decay_10x, no_decay_10x

    if opts.lr_policy == 'poly':
        scheduler = utils.PolyLR(optimizer,
                                 max_iters=opts.epochs * len(train_loader),
                                 power=opts.lr_power)
    elif opts.lr_policy == 'step':
        scheduler = torch.optim.lr_scheduler.StepLR(
            optimizer,
            step_size=opts.lr_decay_step,
            gamma=opts.lr_decay_factor)
    print("Optimizer:\n%s" % (optimizer))

    utils.mkdir('checkpoints')
    # Restore
    best_score = 0.0
    cur_epoch = 0
    if opts.ckpt is not None and os.path.isfile(opts.ckpt):
        checkpoint = torch.load(opts.ckpt)
        model_ref.load_state_dict(checkpoint["model_state"])
        optimizer.load_state_dict(checkpoint["optimizer_state"])
        scheduler.load_state_dict(checkpoint["scheduler_state"])
        cur_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint['best_score']
        print("Model restored from %s" % opts.ckpt)
        del checkpoint  # free memory
    else:
        print("[!] Retrain")

    def save_ckpt(path):
        """ save current model
        """
        state = {
            "epoch": cur_epoch,
            "model_state": model_ref.state_dict(),
            "optimizer_state": optimizer.state_dict(),
            "scheduler_state": scheduler.state_dict(),
            "best_score": best_score,
        }
        torch.save(state, path)
        print("Model saved as %s" % path)

    # Set up criterion
    criterion = utils.get_loss(opts.loss_type)
    #==========   Train Loop   ==========#

    vis_sample_id = np.random.randint(
        0, len(val_loader), opts.vis_sample_num,
        np.int32) if opts.enable_vis else None  # sample idxs for visualization
    label2color = utils.Label2Color(cmap=utils.color_map(
        opts.dataset))  # convert labels to images
    denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
                               std=[0.229, 0.224,
                                    0.225])  # denormalization for ori images
    while cur_epoch < opts.epochs:
        # =====  Train  =====
        model.train()
        if opts.fix_bn == True:
            model_ref.fix_bn()

        epoch_loss = train(cur_epoch=cur_epoch,
                           criterion=criterion,
                           model=model,
                           optim=optimizer,
                           train_loader=train_loader,
                           device=device,
                           scheduler=scheduler,
                           vis=vis)
        print("End of Epoch %d/%d, Average Loss=%f" %
              (cur_epoch, opts.epochs, epoch_loss))
        if opts.enable_vis:
            vis.vis_scalar("Epoch Loss", cur_epoch, epoch_loss)

        # =====  Save Latest Model  =====
        if (cur_epoch + 1) % opts.ckpt_interval == 0:
            save_ckpt('checkpoints/latest_%s_%s.pkl' %
                      (opts.backbone, opts.dataset))

        # =====  Validation  =====
        if (cur_epoch + 1) % opts.val_interval == 0:
            print("validate on val set...")
            model.eval()
            val_score, ret_samples = validate(model=model,
                                              loader=val_loader,
                                              device=device,
                                              metrics=metrics,
                                              ret_samples_ids=vis_sample_id)
            print(metrics.to_str(val_score))

            # =====  Save Best Model  =====
            if val_score['Mean IoU'] > best_score:  # save best model
                best_score = val_score['Mean IoU']
                save_ckpt('checkpoints/best_%s_%s.pkl' %
                          (opts.backbone, opts.dataset))

            if vis is not None:  # visualize validation score and samples
                vis.vis_scalar("[Val] Overall Acc", cur_epoch,
                               val_score['Overall Acc'])
                vis.vis_scalar("[Val] Mean IoU", cur_epoch,
                               val_score['Mean IoU'])
                vis.vis_table("[Val] Class IoU", val_score['Class IoU'])

                for k, (img, target, lbl) in enumerate(ret_samples):
                    img = (denorm(img) * 255).astype(np.uint8)
                    target = label2color(target).transpose(2, 0,
                                                           1).astype(np.uint8)
                    lbl = label2color(lbl).transpose(2, 0, 1).astype(np.uint8)

                    concat_img = np.concatenate((img, target, lbl),
                                                axis=2)  # concat along width
                    vis.vis_image('Sample %d' % k, concat_img)

            if opts.val_on_trainset == True:  # validate on train set
                print("validate on train set...")
                model.eval()
                train_score, _ = validate(model=model,
                                          loader=train_loader,
                                          device=device,
                                          metrics=metrics)
                print(metrics.to_str(train_score))
                if vis is not None:
                    vis.vis_scalar("[Train] Overall Acc", cur_epoch,
                                   train_score['Overall Acc'])
                    vis.vis_scalar("[Train] Mean IoU", cur_epoch,
                                   train_score['Mean IoU'])

        cur_epoch += 1
示例#3
0
def main():
    opts = get_argparser().parse_args()
    opts = modify_command_options(opts)

    os.environ['CUDA_VISIBLE_DEVICES'] = opts.gpu_id
    device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' )
    print("Device: %s"%device)

    # Set up random seed
    torch.manual_seed(opts.random_seed)
    torch.cuda.manual_seed(opts.random_seed)
    np.random.seed(opts.random_seed)
    random.seed(opts.random_seed)

    # Set up dataloader
    _, val_dst = get_dataset(opts)
    val_loader = data.DataLoader(val_dst, batch_size=opts.batch_size if opts.crop_val else 1 , shuffle=False, num_workers=opts.num_workers)
    print("Dataset: %s, Val set: %d"%(opts.dataset, len(val_dst)))
    
    # Set up model
    print("Backbone: %s"%opts.backbone)
    model = DeepLabv3(num_classes=opts.num_classes, backbone=opts.backbone, pretrained=True, momentum=opts.bn_mom, output_stride=opts.output_stride, use_separable_conv=opts.use_separable_conv)
    if opts.use_gn==True:
        print("[!] Replace BatchNorm with GroupNorm!")
        model = utils.convert_bn2gn(model)

    if torch.cuda.device_count()>1: # Parallel
        print("%d GPU parallel"%(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
        model_ref = model.module # for ckpt
    else:
        model_ref = model
    model = model.to(device)
    
    # Set up metrics
    metrics = StreamSegMetrics(opts.num_classes)

    if opts.save_path is not None:
        utils.mkdir(opts.save_path)

    # Restore
    if opts.ckpt is not None and os.path.isfile(opts.ckpt):
        checkpoint = torch.load(opts.ckpt)
        model_ref.load_state_dict(checkpoint["model_state"])
        print("Model restored from %s"%opts.ckpt)
    else:
        print("[!] Retrain")
    
    label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset)) # convert labels to images
    denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],  
                               std=[0.229, 0.224, 0.225])  # denormalization for ori images
    model.eval()
    metrics.reset()
    idx = 0

    if opts.save_path is not None:
        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt
        

    with torch.no_grad():
        for i, (images, labels) in tqdm( enumerate( val_loader ) ):
            images = images.to(device, dtype=torch.float32)
            labels = labels.to(device, dtype=torch.long)

            outputs = model(images)
            preds = outputs.detach().max(dim=1)[1].cpu().numpy()
            targets = labels.cpu().numpy()
            
            metrics.update(targets, preds)
            if opts.save_path is not None:
                for i in range(len(images)):
                    image = images[i].detach().cpu().numpy()
                    target = targets[i]
                    pred = preds[i]

                    image = (denorm(image) * 255).transpose(1,2,0).astype(np.uint8)
                    target = label2color(target).astype(np.uint8)
                    pred = label2color(pred).astype(np.uint8)

                    Image.fromarray(image).save(os.path.join(opts.save_path, '%d_image.png'%idx) )
                    Image.fromarray(target).save(os.path.join(opts.save_path, '%d_target.png'%idx) )
                    Image.fromarray(pred).save(os.path.join(opts.save_path, '%d_pred.png'%idx) )
                    
                    fig = plt.figure()
                    plt.imshow(image)
                    plt.axis('off')
                    plt.imshow(pred, alpha=0.7)
                    ax = plt.gca()
                    ax.xaxis.set_major_locator(matplotlib.ticker.NullLocator())
                    ax.yaxis.set_major_locator(matplotlib.ticker.NullLocator())
                    plt.savefig(os.path.join(opts.save_path, '%d_overlay.png'%idx), bbox_inches='tight', pad_inches=0)
                    plt.close()
                    idx+=1
                
    score = metrics.get_results()
    print(metrics.to_str(score))
    if opts.save_path is not None:
        with open(os.path.join(opts.save_path, 'score.txt'), mode='w') as f:
            f.write(metrics.to_str(score))
示例#4
0
def main(opts):
    distributed.init_process_group(backend='nccl', init_method='env://')
    device_id, device = opts.local_rank, torch.device(opts.local_rank)
    rank, world_size = distributed.get_rank(), distributed.get_world_size()
    torch.cuda.set_device(device_id)

    # Initialize logging
    task_name = f"{opts.task}-{opts.dataset}"
    logdir_full = f"{opts.logdir}/{task_name}/{opts.name}/"
    if rank == 0:
        logger = Logger(logdir_full, rank=rank, debug=opts.debug, summary=opts.visualize, step=opts.step)
    else:
        logger = Logger(logdir_full, rank=rank, debug=opts.debug, summary=False)

    logger.print(f"Device: {device}")

    # Set up random seed
    torch.manual_seed(opts.random_seed)
    torch.cuda.manual_seed(opts.random_seed)
    np.random.seed(opts.random_seed)
    random.seed(opts.random_seed)

    # xxx Set up dataloader
    train_dst, val_dst, test_dst, n_classes = get_dataset(opts)
    # reset the seed, this revert changes in random seed
    random.seed(opts.random_seed)

    train_loader = data.DataLoader(train_dst, batch_size=opts.batch_size,
                                   sampler=DistributedSampler(train_dst, num_replicas=world_size, rank=rank),
                                   num_workers=opts.num_workers, drop_last=True)
    val_loader = data.DataLoader(val_dst, batch_size=opts.batch_size if opts.crop_val else 1,
                                 sampler=DistributedSampler(val_dst, num_replicas=world_size, rank=rank),
                                 num_workers=opts.num_workers)
    logger.info(f"Dataset: {opts.dataset}, Train set: {len(train_dst)}, Val set: {len(val_dst)},"
                f" Test set: {len(test_dst)}, n_classes {n_classes}")
    logger.info(f"Total batch size is {opts.batch_size * world_size}")

    # xxx Set up model
    logger.info(f"Backbone: {opts.backbone}")

    step_checkpoint = None
    model = make_model(opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step))
    logger.info(f"[!] Model made with{'out' if opts.no_pretrained else ''} pre-trained")

    if opts.step == 0:  # if step 0, we don't need to instance the model_old
        model_old = None
    else:  # instance model_old
        model_old = make_model(opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step - 1))

    if opts.fix_bn:
        model.fix_bn()

    logger.debug(model)

    # xxx Set up optimizer
    params = []
    if not opts.freeze:
        params.append({"params": filter(lambda p: p.requires_grad, model.body.parameters()),
                       'weight_decay': opts.weight_decay})

    params.append({"params": filter(lambda p: p.requires_grad, model.head.parameters()),
                   'weight_decay': opts.weight_decay})

    params.append({"params": filter(lambda p: p.requires_grad, model.cls.parameters()),
                   'weight_decay': opts.weight_decay})

    optimizer = torch.optim.SGD(params, lr=opts.lr, momentum=0.9, nesterov=True)

    if opts.lr_policy == 'poly':
        scheduler = utils.PolyLR(optimizer, max_iters=opts.epochs * len(train_loader), power=opts.lr_power)
    elif opts.lr_policy == 'step':
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
    else:
        raise NotImplementedError
    logger.debug("Optimizer:\n%s" % optimizer)

    if model_old is not None:
        [model, model_old], optimizer = amp.initialize([model.to(device), model_old.to(device)], optimizer,
                                                       opt_level=opts.opt_level)
        model_old = DistributedDataParallel(model_old)
    else:
        model, optimizer = amp.initialize(model.to(device), optimizer, opt_level=opts.opt_level)

    # Put the model on GPU
    model = DistributedDataParallel(model, delay_allreduce=True)

    # xxx Load old model from old weights if step > 0!
    if opts.step > 0:
        # get model path
        if opts.step_ckpt is not None:
            path = opts.step_ckpt
        else:
            path = f"checkpoints/step/{task_name}_{opts.name}_{opts.step - 1}.pth"

        # generate model from path
        if os.path.exists(path):
            step_checkpoint = torch.load(path, map_location="cpu")
            model.load_state_dict(step_checkpoint['model_state'], strict=False)  # False because of incr. classifiers
            if opts.init_balanced:
                # implement the balanced initialization (new cls has weight of background and bias = bias_bkg - log(N+1)
                model.module.init_new_classifier(device)
            # Load state dict from the model state dict, that contains the old model parameters
            model_old.load_state_dict(step_checkpoint['model_state'], strict=True)  # Load also here old parameters
            logger.info(f"[!] Previous model loaded from {path}")
            # clean memory
            del step_checkpoint['model_state']
        elif opts.debug:
            logger.info(f"[!] WARNING: Unable to find of step {opts.step - 1}! Do you really want to do from scratch?")
        else:
            raise FileNotFoundError(path)
        # put the old model into distributed memory and freeze it
        for par in model_old.parameters():
            par.requires_grad = False
        model_old.eval()

    # xxx Set up Trainer
    trainer_state = None
    # if not first step, then instance trainer from step_checkpoint
    if opts.step > 0 and step_checkpoint is not None:
        if 'trainer_state' in step_checkpoint:
            trainer_state = step_checkpoint['trainer_state']

    # instance trainer (model must have already the previous step weights)
    trainer = Trainer(model, model_old, device=device, opts=opts, trainer_state=trainer_state,
                      classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step))

    # xxx Handle checkpoint for current model (model old will always be as previous step or None)
    best_score = 0.0
    cur_epoch = 0
    if opts.ckpt is not None and os.path.isfile(opts.ckpt):
        checkpoint = torch.load(opts.ckpt, map_location="cpu")
        model.load_state_dict(checkpoint["model_state"], strict=True)
        optimizer.load_state_dict(checkpoint["optimizer_state"])
        scheduler.load_state_dict(checkpoint["scheduler_state"])
        cur_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint['best_score']
        logger.info("[!] Model restored from %s" % opts.ckpt)
        # if we want to resume training, resume trainer from checkpoint
        if 'trainer_state' in checkpoint:
            trainer.load_state_dict(checkpoint['trainer_state'])
        del checkpoint
    else:
        if opts.step == 0:
            logger.info("[!] Train from scratch")

    # xxx Train procedure
    # print opts before starting training to log all parameters
    logger.add_table("Opts", vars(opts))

    if rank == 0 and opts.sample_num > 0:
        sample_ids = np.random.choice(len(val_loader), opts.sample_num, replace=False)  # sample idxs for visualization
        logger.info(f"The samples id are {sample_ids}")
    else:
        sample_ids = None

    label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset))  # convert labels to images
    denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
                               std=[0.229, 0.224, 0.225])  # de-normalization for original images

    TRAIN = not opts.test
    val_metrics = StreamSegMetrics(n_classes)
    results = {}

    # check if random is equal here.
    logger.print(torch.randint(0,100, (1,1)))
    # train/val here
    while cur_epoch < opts.epochs and TRAIN:
        # =====  Train  =====
        model.train()

        epoch_loss = trainer.train(cur_epoch=cur_epoch, optim=optimizer,
                                   train_loader=train_loader, scheduler=scheduler, logger=logger)

        logger.info(f"End of Epoch {cur_epoch}/{opts.epochs}, Average Loss={epoch_loss[0]+epoch_loss[1]},"
                    f" Class Loss={epoch_loss[0]}, Reg Loss={epoch_loss[1]}")

        # =====  Log metrics on Tensorboard =====
        logger.add_scalar("E-Loss", epoch_loss[0]+epoch_loss[1], cur_epoch)
        logger.add_scalar("E-Loss-reg", epoch_loss[1], cur_epoch)
        logger.add_scalar("E-Loss-cls", epoch_loss[0], cur_epoch)

        # =====  Validation  =====
        if (cur_epoch + 1) % opts.val_interval == 0:
            logger.info("validate on val set...")
            model.eval()
            val_loss, val_score, ret_samples = trainer.validate(loader=val_loader, metrics=val_metrics,
                                                                ret_samples_ids=sample_ids, logger=logger)

            logger.print("Done validation")
            logger.info(f"End of Validation {cur_epoch}/{opts.epochs}, Validation Loss={val_loss[0]+val_loss[1]},"
                        f" Class Loss={val_loss[0]}, Reg Loss={val_loss[1]}")

            logger.info(val_metrics.to_str(val_score))

            # =====  Save Best Model  =====
            if rank == 0:  # save best model at the last iteration
                score = val_score['Mean IoU']
                # best model to build incremental steps
                save_ckpt(f"checkpoints/step/{task_name}_{opts.name}_{opts.step}.pth",
                          model, trainer, optimizer, scheduler, cur_epoch, score)
                logger.info("[!] Checkpoint saved.")

            # =====  Log metrics on Tensorboard =====
            # visualize validation score and samples
            logger.add_scalar("V-Loss", val_loss[0]+val_loss[1], cur_epoch)
            logger.add_scalar("V-Loss-reg", val_loss[1], cur_epoch)
            logger.add_scalar("V-Loss-cls", val_loss[0], cur_epoch)
            logger.add_scalar("Val_Overall_Acc", val_score['Overall Acc'], cur_epoch)
            logger.add_scalar("Val_MeanIoU", val_score['Mean IoU'], cur_epoch)
            logger.add_table("Val_Class_IoU", val_score['Class IoU'], cur_epoch)
            logger.add_table("Val_Acc_IoU", val_score['Class Acc'], cur_epoch)
            # logger.add_figure("Val_Confusion_Matrix", val_score['Confusion Matrix'], cur_epoch)

            # keep the metric to print them at the end of training
            results["V-IoU"] = val_score['Class IoU']
            results["V-Acc"] = val_score['Class Acc']

            for k, (img, target, lbl) in enumerate(ret_samples):
                img = (denorm(img) * 255).astype(np.uint8)
                target = label2color(target).transpose(2, 0, 1).astype(np.uint8)
                lbl = label2color(lbl).transpose(2, 0, 1).astype(np.uint8)

                concat_img = np.concatenate((img, target, lbl), axis=2)  # concat along width
                logger.add_image(f'Sample_{k}', concat_img, cur_epoch)

        cur_epoch += 1

    # =====  Save Best Model at the end of training =====
    if rank == 0 and TRAIN:  # save best model at the last iteration
        # best model to build incremental steps
        save_ckpt(f"checkpoints/step/{task_name}_{opts.name}_{opts.step}.pth",
                  model, trainer, optimizer, scheduler, cur_epoch, best_score)
        logger.info("[!] Checkpoint saved.")

    torch.distributed.barrier()

    # xxx From here starts the test code
    logger.info("*** Test the model on all seen classes...")
    # make data loader
    test_loader = data.DataLoader(test_dst, batch_size=opts.batch_size if opts.crop_val else 1,
                                  sampler=DistributedSampler(test_dst, num_replicas=world_size, rank=rank),
                                  num_workers=opts.num_workers)

    # load best model
    if TRAIN:
        model = make_model(opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step))
        # Put the model on GPU
        model = DistributedDataParallel(model.cuda(device))
        ckpt = f"checkpoints/step/{task_name}_{opts.name}_{opts.step}.pth"
        checkpoint = torch.load(ckpt, map_location="cpu")
        model.load_state_dict(checkpoint["model_state"])
        logger.info(f"*** Model restored from {ckpt}")
        del checkpoint
        trainer = Trainer(model, None, device=device, opts=opts)

    model.eval()

    val_loss, val_score, _ = trainer.validate(loader=test_loader, metrics=val_metrics, logger=logger)
    logger.print("Done test")
    logger.info(f"*** End of Test, Total Loss={val_loss[0]+val_loss[1]},"
                f" Class Loss={val_loss[0]}, Reg Loss={val_loss[1]}")
    logger.info(val_metrics.to_str(val_score))
    logger.add_table("Test_Class_IoU", val_score['Class IoU'])
    logger.add_table("Test_Class_Acc", val_score['Class Acc'])
    logger.add_figure("Test_Confusion_Matrix", val_score['Confusion Matrix'])
    results["T-IoU"] = val_score['Class IoU']
    results["T-Acc"] = val_score['Class Acc']
    logger.add_results(results)

    logger.add_scalar("T_Overall_Acc", val_score['Overall Acc'], opts.step)
    logger.add_scalar("T_MeanIoU", val_score['Mean IoU'], opts.step)
    logger.add_scalar("T_MeanAcc", val_score['Mean Acc'], opts.step)

    logger.close()
示例#5
0
def test_color_map():
    cm = u.color_map()
    print(cm)