示例#1
0
def train(
    env,
    cost_fn,
    logdir=None,
    render=False,
    learning_rate=1e-3,
    onpol_iters=10,
    dynamics_iters=60,
    batch_size=512,
    num_paths_random=10,
    num_paths_onpol=10,
    num_simulated_paths=10000,
    env_horizon=1000,
    mpc_horizon=15,
    n_layers=2,
    size=500,
    activation=tf.nn.relu,
    output_activation=None,
    clip_param=0.2,
    entcoeff=0.0,
    gamma=0.99,
    lam=0.95,
    optim_epochs=10,
    optim_batchsize=64,
    schedule='linear',
    bc_lr=1e-3,
    ppo_lr=3e-4,
    timesteps_per_actorbatch=1000,
    MPC=True,
    BEHAVIORAL_CLONING=True,
    PPO=True,
):

    start = time.time()

    logz.configure_output_dir(logdir)
    merged_summary, summary_writer, ppo_return_op, mpc_return_op, model_loss_op, reward_loss_op, ppo_std_op, mpc_std_op = build_summary_ops(
        logdir, env)

    print("-------- env info --------")
    print("Environment: ", FLAGS.env_name)
    print("observation_space: ", env.observation_space.shape)
    print("action_space: ", env.action_space.shape)
    print("action_space low: ", env.action_space.low)
    print("action_space high: ", env.action_space.high)

    print("BEHAVIORAL_CLONING: ", BEHAVIORAL_CLONING)
    print("PPO: ", PPO)
    print("MPC-AUG: ", MPC)

    print(" ")

    random_controller = RandomController(env)

    # Creat buffers
    model_data_buffer = DataBufferGeneral(FLAGS.MODELBUFFER_SIZE, 5)
    ppo_data_buffer = DataBufferGeneral(10000, 4)
    bc_data_buffer = DataBufferGeneral(2000, 2)

    # Random sample path

    print("collecting random data .....  ")
    paths = sample(env,
                   random_controller,
                   num_paths=num_paths_random,
                   horizon=env_horizon,
                   render=False,
                   verbose=False)

    # add into buffer
    for path in paths:
        for n in range(len(path['observations'])):
            model_data_buffer.add([
                path['observations'][n], path['actions'][n],
                path['rewards'][n], path['next_observations'][n],
                path['next_observations'][n] - path['observations'][n]
            ])

    print("model data buffer size: ", model_data_buffer.size)

    normalization = compute_normalization(model_data_buffer)

    #========================================================
    #
    # Build dynamics model and MPC controllers and Behavioral cloning network.
    #
    # tf_config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1)

    tf_config = tf.ConfigProto()

    tf_config.gpu_options.allow_growth = True

    sess = tf.Session(config=tf_config)

    policy_nn = MlpPolicy(sess=sess,
                          env=env,
                          hid_size=128,
                          num_hid_layers=2,
                          clip_param=clip_param,
                          entcoeff=entcoeff)

    if FLAGS.LEARN_REWARD:
        print("Learn reward function")
        dyn_model = NNDynamicsRewardModel(env=env,
                                          normalization=normalization,
                                          batch_size=batch_size,
                                          iterations=dynamics_iters,
                                          learning_rate=learning_rate,
                                          sess=sess)

        mpc_ppo_controller = MPCcontrollerPolicyNetReward(
            env=env,
            dyn_model=dyn_model,
            explore=FLAGS.MPC_EXP,
            policy_net=policy_nn,
            self_exp=FLAGS.SELFEXP,
            horizon=mpc_horizon,
            num_simulated_paths=num_simulated_paths)
    else:
        print("Use predefined cost function")
        dyn_model = NNDynamicsModel(env=env,
                                    n_layers=n_layers,
                                    size=size,
                                    activation=activation,
                                    output_activation=output_activation,
                                    normalization=normalization,
                                    batch_size=batch_size,
                                    iterations=dynamics_iters,
                                    learning_rate=learning_rate,
                                    sess=sess)

        mpc_ppo_controller = MPCcontrollerPolicyNet(
            env=env,
            dyn_model=dyn_model,
            explore=FLAGS.MPC_EXP,
            policy_net=policy_nn,
            self_exp=FLAGS.SELFEXP,
            horizon=mpc_horizon,
            cost_fn=cost_fn,
            num_simulated_paths=num_simulated_paths)

    mpc_controller = MPCcontroller(env=env,
                                   dyn_model=dyn_model,
                                   horizon=mpc_horizon,
                                   cost_fn=cost_fn,
                                   num_simulated_paths=num_simulated_paths)
    # if not PPO:
    #     mpc_ppo_controller = mpc_controller

    #========================================================
    #
    # Tensorflow session building.
    #
    sess.__enter__()
    tf.global_variables_initializer().run()

    # init or load checkpoint with saver
    saver = tf.train.Saver()

    checkpoint = tf.train.get_checkpoint_state(logdir)

    if checkpoint and checkpoint.model_checkpoint_path and FLAGS.LOAD_MODEL:
        saver.restore(sess, checkpoint.model_checkpoint_path)
        print("checkpoint loaded:", checkpoint.model_checkpoint_path)
    else:
        print("Could not find old checkpoint")
        if not os.path.exists(logdir):
            os.mkdir(logdir)

    #========================================================
    #
    # Prepare for rollouts
    #

    episodes_so_far = 0
    timesteps_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    max_timesteps = num_paths_onpol * env_horizon
    bc = False
    ppo_mpc = False
    mpc_returns = 0
    model_loss = 0
    for itr in range(onpol_iters):

        print(" ")

        print("onpol_iters: ", itr)

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)

        print("bc learning_rate: ", bc_lr)
        print("ppo learning_rate: ", ppo_lr)

        ################## fit mpc model
        if MPC:
            model_loss, reward_loss = dyn_model.fit(model_data_buffer)

        ################## ppo seg data
        ppo_data_buffer.clear()

        # ppo_seg = traj_segment_generator_ppo(policy_nn, env, env_horizon)
        ppo_mpc = False
        mpc = False
        ppo_seg = traj_segment_generator(policy_nn, mpc_controller,
                                         mpc_ppo_controller, bc_data_buffer,
                                         env, mpc, ppo_mpc, env_horizon)

        add_vtarg_and_adv(ppo_seg, gamma, lam)

        ob, ac, rew, nxt_ob, atarg, tdlamret = \
        ppo_seg["ob"], ppo_seg["ac"], ppo_seg["rew"], ppo_seg["nxt_ob"], ppo_seg["adv"], ppo_seg["tdlamret"]

        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        # add into buffer
        for n in range(len(ob)):
            ppo_data_buffer.add([ob[n], ac[n], atarg[n], tdlamret[n]])
            model_data_buffer.add(
                [ob[n], ac[n], rew[n], nxt_ob[n], nxt_ob[n] - ob[n]])

        ppo_std = np.std(ac, axis=0)
        print("ppo_std: ", ppo_std)

        ################## mpc augmented seg data

        if MPC:
            print("MPC AUG PPO")

            ppo_mpc = True
            mpc = True
            mpc_seg = traj_segment_generator(policy_nn, mpc_controller,
                                             mpc_ppo_controller,
                                             bc_data_buffer, env, mpc, ppo_mpc,
                                             env_horizon)
            add_vtarg_and_adv(mpc_seg, gamma, lam)

            ob, ac, mpcac, rew, nxt_ob, atarg, tdlamret = mpc_seg[
                "ob"], mpc_seg["ac"], mpc_seg["mpcac"], mpc_seg[
                    "rew"], mpc_seg["nxt_ob"], mpc_seg["adv"], mpc_seg[
                        "tdlamret"]
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            mpc_returns = mpc_seg["ep_rets"]
            mpc_std = np.std(mpcac)

        if not MPC:
            mpc_std = 0

        ################## mpc random seg data

        if FLAGS.mpc_rand:
            print("MPC Random base policy")

            ppo_mpc = False
            mpc = True
            mpc_random_seg = traj_segment_generator(policy_nn, mpc_controller,
                                                    mpc_ppo_controller,
                                                    bc_data_buffer, env, mpc,
                                                    ppo_mpc, env_horizon)
            add_vtarg_and_adv(mpc_random_seg, gamma, lam)

            ob, ac, mpcac, rew, nxt_ob, atarg, tdlamret = mpc_random_seg[
                "ob"], mpc_random_seg["ac"], mpc_random_seg[
                    "mpcac"], mpc_random_seg["rew"], mpc_random_seg[
                        "nxt_ob"], mpc_random_seg["adv"], mpc_random_seg[
                            "tdlamret"]
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            mpc_rand_returns = mpc_random_seg["ep_rets"]

        ################# PPO deterministic evaluation
        ppo_determinisitc_return = policy_net_eval(sess,
                                                   env,
                                                   policy_nn,
                                                   env_horizon,
                                                   stochastic=False)

        ################## optimization

        print("ppo_data_buffer size", ppo_data_buffer.size)
        print("bc_data_buffer size", bc_data_buffer.size)
        print("model data buffer size: ", model_data_buffer.size)

        # optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(policy_nn, "ob_rms"):
            policy_nn.ob_rms.update(ob)  # update running mean/std for policy
        policy_nn.assign_old_eq_new(
        )  # set old parameter values to new parameter values

        for op_ep in range(optim_epochs):
            # losses = [] # list of tuples, each of which gives the loss for a minibatch
            # for i in range(int(timesteps_per_actorbatch/optim_batchsize)):

            if PPO:
                sample_ob_no, sample_ac_na, sample_adv_n, sample_b_n_target = ppo_data_buffer.sample(
                    optim_batchsize)
                newlosses = policy_nn.lossandupdate_ppo(
                    sample_ob_no, sample_ac_na, sample_adv_n,
                    sample_b_n_target, cur_lrmult, ppo_lr * cur_lrmult)
                # losses.append(newlosses)

            if BEHAVIORAL_CLONING and bc:
                sample_ob_no, sample_ac_na = bc_data_buffer.sample(
                    optim_batchsize)
                # print("sample_ob_no", sample_ob_no.shape)
                # print("sample_ac_na", sample_ac_na.shape)

                policy_nn.update_bc(sample_ob_no, sample_ac_na,
                                    bc_lr * cur_lrmult)

            if op_ep % (100) == 0 and BEHAVIORAL_CLONING and bc:
                print('epcho: ', op_ep)
                policy_net_eval(sess, env, policy_nn, env_horizon)

        ################## print and save data
        seg = ppo_seg

        ep_lengths = seg["ep_lens"]
        returns = seg["ep_rets"]

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values

        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)

        # log ppo
        logz.log_tabular("TimeSoFar", time.time() - start)
        logz.log_tabular("TimeEp", time.time() - tstart)
        logz.log_tabular("Iteration", itr)
        logz.log_tabular("AverageReturn", np.mean(returns))
        logz.log_tabular("StdReturn", np.std(returns))
        logz.log_tabular("MaxReturn", np.max(returns))
        logz.log_tabular("MinReturn", np.min(returns))
        logz.log_tabular("EpLenMean", np.mean(ep_lengths))
        logz.log_tabular("EpLenStd", np.std(ep_lengths))
        logz.log_tabular("TimestepsSoFar", timesteps_so_far)
        logz.log_tabular("Condition", "PPO")
        logz.dump_tabular()

        # log ppo deterministic
        logz.log_tabular("Iteration", itr)
        logz.log_tabular("AverageReturn", ppo_determinisitc_return)
        logz.log_tabular("Condition", "PPO_DETERMINISTIC")
        logz.dump_tabular()

        # log mpc
        if MPC:
            logz.log_tabular("TimeSoFar", time.time() - start)
            logz.log_tabular("TimeEp", time.time() - tstart)
            logz.log_tabular("Iteration", itr)
            logz.log_tabular("AverageReturn", np.mean(mpc_returns))
            logz.log_tabular("StdReturn", np.std(mpc_returns))
            logz.log_tabular("MaxReturn", np.max(mpc_returns))
            logz.log_tabular("MinReturn", np.min(mpc_returns))
            logz.log_tabular("EpLenMean", np.mean(ep_lengths))
            logz.log_tabular("EpLenStd", np.std(ep_lengths))
            logz.log_tabular("TimestepsSoFar", timesteps_so_far)
            logz.log_tabular("Condition", "MPC_PPO")
            logz.dump_tabular()

        if FLAGS.mpc_rand:
            logz.log_tabular("TimeSoFar", time.time() - start)
            logz.log_tabular("TimeEp", time.time() - tstart)
            logz.log_tabular("Iteration", itr)
            logz.log_tabular("AverageReturn", np.mean(mpc_rand_returns))
            logz.log_tabular("StdReturn", np.std(mpc_rand_returns))
            logz.log_tabular("MaxReturn", np.max(mpc_rand_returns))
            logz.log_tabular("MinReturn", np.min(mpc_rand_returns))
            logz.log_tabular("EpLenMean", np.mean(ep_lengths))
            logz.log_tabular("EpLenStd", np.std(ep_lengths))
            logz.log_tabular("TimestepsSoFar", timesteps_so_far)
            logz.log_tabular("Condition", "MPC_RAND")
            logz.dump_tabular()

        # logz.pickle_tf_vars()
        tstart = time.time()

        ################### TF Summaries
        summary_str = sess.run(merged_summary,
                               feed_dict={
                                   ppo_return_op: np.mean(returns),
                                   mpc_return_op: np.mean(mpc_returns),
                                   model_loss_op: model_loss,
                                   ppo_std_op: ppo_std,
                                   reward_loss_op: reward_loss,
                                   mpc_std_op: mpc_std,
                               })
        summary_writer.add_summary(summary_str, itr)
        summary_writer.flush()

        ################ TF SAVE
        if itr % FLAGS.SAVE_ITER == 0 and itr != 0:
            save_path = saver.save(sess, logdir + "/model.ckpt")
            print("Model saved in path: %s" % save_path)
示例#2
0
def train(env, 
         cost_fn,
         logdir=None,
         render=False,
         learning_rate=1e-3,
         onpol_iters=10,
         dynamics_iters=60,
         batch_size=512,
         num_paths_random=10, 
         num_paths_onpol=10, 
         num_simulated_paths=10000,
         env_horizon=1000, 
         mpc_horizon=15,
         n_layers=2,
         size=500,
         activation=tf.nn.relu,
         output_activation=None,
         clip_param=0.2 , 
         entcoeff=0.0,
         gamma=0.99,
         lam=0.95,
         optim_epochs=10,
         optim_batchsize=64,
         schedule='linear',
         bc_lr=1e-3,
         ppo_lr=3e-4,
         timesteps_per_actorbatch=1000,
         MPC = True,
         BEHAVIORAL_CLONING = True,
         PPO = True,
         ):

    start = time.time()

    logz.configure_output_dir(logdir)


    print("-------- env info --------")
    print("observation_space: ", env.observation_space.shape)
    print("action_space: ", env.action_space.shape)
    print("BEHAVIORAL_CLONING: ", BEHAVIORAL_CLONING)
    print("PPO: ", PPO)
    print("MPC-AUG: ", MPC)
    print(" ")


    # initialize buffers
    model_data_buffer = DataBufferGeneral(1000000, 5)
    ppo_data_buffer = DataBufferGeneral(10000, 4)
    bc_data_buffer = DataBufferGeneral(BC_BUFFER_SIZE, 2)

    # random sample path
    print("collecting random data .....  ")
    random_controller = RandomController(env)
    paths = sample(env, 
               random_controller, 
               num_paths=num_paths_random, 
               horizon=env_horizon, 
               render=False,
               verbose=False)

    # add into buffer
    for path in paths:
        for n in range(len(path['observations'])):
            model_data_buffer.add([path['observations'][n],
                                 path['actions'][n], 
                                 path['rewards'][n], 
                                 path['next_observations'][n], 
                                 path['next_observations'][n] - path['observations'][n]])


    print("model data buffer size: ", model_data_buffer.size)

    normalization = compute_normalization(model_data_buffer)

    #========================================================
    # 
    # Build dynamics model and MPC controllers and Behavioral cloning network.
    # 
    # tf_config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) 
    tf_config = tf.ConfigProto() 

    tf_config.gpu_options.allow_growth = True

    sess = tf.Session(config=tf_config)

    dyn_model = NNDynamicsRewardModel(env=env, 
                                    normalization=normalization,
                                    batch_size=batch_size,
                                    iterations=dynamics_iters,
                                    learning_rate=learning_rate,
                                    sess=sess)

    mpc_controller = MPCcontroller(env=env, 
                                   dyn_model=dyn_model, 
                                   horizon=mpc_horizon, 
                                   cost_fn=cost_fn, 
                                   num_simulated_paths=num_simulated_paths)

    policy_nn = MlpPolicy(sess=sess, env=env, hid_size=256, num_hid_layers=2, clip_param=clip_param , entcoeff=entcoeff)

    mpc_ppo_controller = MPCcontrollerPolicyNetReward(env=env, 
                                   dyn_model=dyn_model, 
                                   policy_net=policy_nn,
                                   self_exp=False,
                                   horizon=mpc_horizon, 
                                   num_simulated_paths=num_simulated_paths)



    #========================================================
    # 
    # Tensorflow session building.
    # 
    sess.__enter__()
    tf.global_variables_initializer().run()

    # init or load checkpoint with saver
    saver = tf.train.Saver()

    checkpoint = tf.train.get_checkpoint_state(CHECKPOINT_DIR)

    if checkpoint and checkpoint.model_checkpoint_path and LOAD_MODEL:
        saver.restore(sess, checkpoint.model_checkpoint_path)
        print("checkpoint loaded:", checkpoint.model_checkpoint_path)
    else:
        print("Could not find old checkpoint")
        if not os.path.exists(CHECKPOINT_DIR):
          os.mkdir(CHECKPOINT_DIR)  

    #========================================================
    # 
    # Prepare for rollouts
    # 

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards
    max_timesteps = num_paths_onpol * env_horizon
    bc = False
    ppo_mpc = False
    mpc_returns = 0

    for itr in range(onpol_iters):

        print(" ")

        print("onpol_iters: ", itr)

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult =  max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
            

        print("bc learning_rate: ",  bc_lr)
        print("ppo learning_rate: ",  ppo_lr)


        ################## fit mpc model
        if MPC:
            dyn_model.fit(model_data_buffer)


        ################## ppo seg data
        if PPO:
            ppo_data_buffer.clear()

            # ppo_seg = traj_segment_generator_ppo(policy_nn, env, env_horizon)
            mpc = False
            ppo_seg = traj_segment_generator(policy_nn, mpc_controller, mpc_ppo_controller, bc_data_buffer, env, mpc, ppo_mpc, env_horizon)

            add_vtarg_and_adv(ppo_seg, gamma, lam)

            ob, ac, rew, nxt_ob, atarg, tdlamret = \
            ppo_seg["ob"], ppo_seg["ac"], ppo_seg["rew"], ppo_seg["nxt_ob"], ppo_seg["adv"], ppo_seg["tdlamret"]

            atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

            # add into buffer
            for n in range(len(ob)):
                ppo_data_buffer.add([ob[n], ac[n], atarg[n], tdlamret[n]])

                if MPC:
                    model_data_buffer.add([ob[n], ac[n], rew[n], nxt_ob[n], nxt_ob[n]-ob[n]])


        ################## mpc augmented seg data

        if itr % MPC_AUG_GAP == 0 and MPC:
            print("MPC AUG PPO")

            ppo_mpc = True
            mpc = True
            mpc_seg = traj_segment_generator(policy_nn, mpc_controller, mpc_ppo_controller, bc_data_buffer, env, mpc, ppo_mpc, env_horizon)
            add_vtarg_and_adv(mpc_seg, gamma, lam)

            ob, ac, mpcac, rew, nxt_ob, atarg, tdlamret = mpc_seg["ob"], mpc_seg["ac"], mpc_seg["mpcac"], mpc_seg["rew"], mpc_seg["nxt_ob"], mpc_seg["adv"], mpc_seg["tdlamret"]
            atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

            # add into buffer
            for n in range(len(ob)):
                # if PPO:
                #     ppo_data_buffer.add([ob[n], ac[n], atarg[n], tdlamret[n]])

                if BEHAVIORAL_CLONING and bc:
                    bc_data_buffer.add([ob[n], mpcac[n]])

                if MPC:
                    model_data_buffer.add([ob[n], mpcac[n], rew[n], nxt_ob[n], nxt_ob[n]-ob[n]])

            mpc_returns = mpc_seg["ep_rets"]

        seg = ppo_seg

        # check if seg is good
        ep_lengths = seg["ep_lens"]
        returns =  seg["ep_rets"]

        # saver.save(sess, CHECKPOINT_DIR)
        if BEHAVIORAL_CLONING:
            if np.mean(returns) > 100:
                bc = True
            else:
                bc = False

            print("BEHAVIORAL_CLONING: ", bc)


            bc_return = behavioral_cloning_eval(sess, env, policy_nn, env_horizon)

            if bc_return > 100:
                ppo_mpc = True
            else:
                ppo_mpc = False


        ################## optimization

        print("ppo_data_buffer size", ppo_data_buffer.size)
        print("bc_data_buffer size", bc_data_buffer.size)
        print("model data buffer size: ", model_data_buffer.size)

        # optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(policy_nn, "ob_rms"): policy_nn.ob_rms.update(ob) # update running mean/std for policy
        policy_nn.assign_old_eq_new() # set old parameter values to new parameter values
        
        for op_ep in range(optim_epochs):
            # losses = [] # list of tuples, each of which gives the loss for a minibatch
            # for i in range(int(timesteps_per_actorbatch/optim_batchsize)):

            if PPO:
                sample_ob_no, sample_ac_na, sample_adv_n, sample_b_n_target = ppo_data_buffer.sample(optim_batchsize)
                newlosses = policy_nn.lossandupdate_ppo(sample_ob_no, sample_ac_na, sample_adv_n, sample_b_n_target, cur_lrmult, ppo_lr*cur_lrmult)
                # losses.append(newlosses)

            if BEHAVIORAL_CLONING and bc:
                sample_ob_no, sample_ac_na = bc_data_buffer.sample(optim_batchsize)
                # print("sample_ob_no", sample_ob_no.shape)
                # print("sample_ac_na", sample_ac_na.shape)

                policy_nn.update_bc(sample_ob_no, sample_ac_na, bc_lr*cur_lrmult)

            if op_ep % (100) == 0 and BEHAVIORAL_CLONING and bc:
                print('epcho: ', op_ep)
                behavioral_cloning_eval(sess, env, policy_nn, env_horizon)


        ################## print and save data

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values


        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1



        # if np.mean(returns) > 1000:
        #     filename = "seg_data.pkl"
        #     pickle.dump(seg, open(filename, 'wb'))
        #     print("saved", filename)


        logz.log_tabular("TimeSoFar", time.time() - start)
        logz.log_tabular("TimeEp", time.time() - tstart)
        logz.log_tabular("Iteration", iters_so_far)
        logz.log_tabular("AverageReturn", np.mean(returns))
        logz.log_tabular("MpcReturn", np.mean(mpc_returns))
        logz.log_tabular("StdReturn", np.std(returns))
        logz.log_tabular("MaxReturn", np.max(returns))
        logz.log_tabular("MinReturn", np.min(returns))
        logz.log_tabular("EpLenMean", np.mean(ep_lengths))
        logz.log_tabular("EpLenStd", np.std(ep_lengths))
        # logz.log_tabular("TimestepsThisBatch", timesteps_this_batch)
        logz.log_tabular("TimestepsSoFar", timesteps_so_far)
        logz.dump_tabular()
        logz.pickle_tf_vars()
        tstart = time.time()
示例#3
0
def train(env, 
         cost_fn,
         logdir=None,
         render=False,
         learning_rate=1e-3,
         onpol_iters=10,
         dynamics_iters=60,
         batch_size=512,
         num_paths_random=10, 
         num_paths_onpol=10, 
         num_simulated_paths=10000,
         env_horizon=1000, 
         mpc_horizon=15,
         n_layers=2,
         size=500,
         activation=tf.nn.relu,
         output_activation=None,
         clip_param=0.2 , 
         entcoeff=0.0,
         gamma=0.99,
         lam=0.95,
         optim_epochs=10,
         optim_batchsize=64,
         schedule='linear',
         bc_lr=1e-3,
         ppo_lr=3e-4,
         timesteps_per_actorbatch=1000,
         MPC = True,
         BEHAVIORAL_CLONING = True,
         PPO = True,
         ):

    start = time.time()


    print("-------- env info --------")
    print("Environment: ", FLAGS.env_name)
    print("observation_space: ", env.observation_space.shape)
    print("action_space: ", env.action_space.shape)
    print("action_space low: ", env.action_space.low)
    print("action_space high: ", env.action_space.high)

    print("BEHAVIORAL_CLONING: ", BEHAVIORAL_CLONING)
    print("PPO: ", PPO)
    print("MPC-AUG: ", MPC)

    print(" ")


    random_controller = RandomController(env)

    # Creat buffers
    model_data_buffer = DataBufferGeneral(FLAGS.MODELBUFFER_SIZE, 5)
    ppo_data_buffer = DataBufferGeneral(10000, 4)
    bc_data_buffer = DataBufferGeneral(2000, 2)

    # Random sample path

    print("collecting random data .....  ")
    paths = sample(env, 
               random_controller, 
               num_paths=num_paths_random, 
               horizon=env_horizon, 
               render=False,
               verbose=False)

    # add into buffer
    for path in paths:
        for n in range(len(path['observations'])):
            model_data_buffer.add([path['observations'][n],
                                 path['actions'][n], 
                                 path['rewards'][n], 
                                 path['next_observations'][n], 
                                 path['next_observations'][n] - path['observations'][n]])

    print("model data buffer size: ", model_data_buffer.size)

    normalization = compute_normalization(model_data_buffer)

    #========================================================
    # 
    # Build dynamics model and MPC controllers and Behavioral cloning network.
    # 
    # tf_config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) 

    tf_config = tf.ConfigProto() 

    tf_config.gpu_options.allow_growth = True

    sess = tf.Session(config=tf_config)

    policy_nn = MlpPolicy(sess=sess, env=env, hid_size=128, num_hid_layers=2, clip_param=clip_param , entcoeff=entcoeff)

    if FLAGS.LEARN_REWARD:
        print("Learn reward function")
        dyn_model = NNDynamicsRewardModel(env=env, 
                                        normalization=normalization,
                                        batch_size=batch_size,
                                        iterations=dynamics_iters,
                                        learning_rate=learning_rate,
                                        sess=sess)

        mpc_ppo_controller = MPCcontrollerPolicyNetReward(env=env, 
                                       dyn_model=dyn_model, 
                                       explore=FLAGS.MPC_EXP,
                                       policy_net=policy_nn,
                                       self_exp=FLAGS.SELFEXP,
                                       horizon=mpc_horizon, 
                                       num_simulated_paths=num_simulated_paths)
    else:
        print("Use predefined cost function")
        dyn_model = NNDynamicsModel(env=env, 
                                    n_layers=n_layers, 
                                    size=size, 
                                    activation=activation, 
                                    output_activation=output_activation, 
                                    normalization=normalization,
                                    batch_size=batch_size,
                                    iterations=dynamics_iters,
                                    learning_rate=learning_rate,
                                    sess=sess)

        mpc_ppo_controller = MPCcontrollerPolicyNet(env=env, 
                                       dyn_model=dyn_model, 
                                       explore=FLAGS.MPC_EXP,
                                       policy_net=policy_nn,
                                       self_exp=FLAGS.SELFEXP,
                                       horizon=mpc_horizon, 
                                       cost_fn=cost_fn, 
                                       num_simulated_paths=num_simulated_paths)

    mpc_controller = MPCcontroller(env=env, 
                                   dyn_model=dyn_model, 
                                   horizon=mpc_horizon, 
                                   cost_fn=cost_fn, 
                                   num_simulated_paths=num_simulated_paths)
    # if not PPO:
    #     mpc_ppo_controller = mpc_controller

    #========================================================
    # 
    # Tensorflow session building.
    # 
    sess.__enter__()
    tf.global_variables_initializer().run()

    # init or load checkpoint with saver
    saver = tf.train.Saver()

    checkpoint = tf.train.get_checkpoint_state(FLAGS.model_path)

    print("checkpoint", checkpoint)

    if checkpoint and checkpoint.model_checkpoint_path and FLAGS.LOAD_MODEL:
        saver.restore(sess, checkpoint.model_checkpoint_path)
        print("checkpoint loaded:", checkpoint.model_checkpoint_path)
    else:
        print("Could not find old checkpoint")
        if not os.path.exists(FLAGS.model_path):
          os.mkdir(FLAGS.model_path)  

    #========================================================
    # 
    # Prepare for rollouts
    # 

    tstart = time.time()


    states_true = []
    states_predict = []
    rewards_true = []
    rewards_predict = []
    ob = env.reset()
    ob_pre = np.expand_dims(ob, axis=0)

    states_true.append(ob)
    states_predict.append(ob_pre)

    for step in range(100):
        # ac = env.action_space.sample() # not used, just so we have the datatype
        ac, _ = policy_nn.act(ob, stochastic=True)
        ob, rew, done, _ = env.step(ac)
        ob_pre, r_pre = dyn_model.predict(ob_pre, ac)
        states_true.append(ob)
        rewards_true.append(rew)
        states_predict.append(ob_pre)
        rewards_predict.append(r_pre[0][0])

    states_true = np.asarray(states_true)
    states_predict = np.asarray(states_predict)
    states_predict = np.squeeze(states_predict, axis=1)
    rewards_true = np.asarray(rewards_true)
    rewards_predict = np.asarray(rewards_predict)

    print("states_true", states_true.shape)
    print("states_predict", states_predict.shape)
    print("rewards_true", rewards_true.shape)
    print("rewards_predict", rewards_predict.shape)

    np.savetxt('./data/eval_model/states_true.out', states_true, delimiter=',') 
    np.savetxt('./data/eval_model/states_predict.out', states_predict, delimiter=',') 

    np.savetxt('./data/eval_model/rewards_true.out', rewards_true, delimiter=',') 
    np.savetxt('./data/eval_model/rewards_predict.out', rewards_predict, delimiter=',') 
示例#4
0
def train_PG(
             exp_name='',
             env_name='',
             n_iter=100, 
             gamma=1.0, 
             min_timesteps_per_batch=1000, 
             max_path_length=None,
             learning_rate=5e-3, 
             reward_to_go=False, 
             animate=True, 
             logdir=None, 
             normalize_advantages=False,
             nn_baseline=False, 
             seed=0,
             # network arguments
             n_layers=1,
             size=32,

             # mb mpc arguments
             model_learning_rate=1e-3,
             onpol_iters=10,
             dynamics_iters=260,
             batch_size=512,
             num_paths_random=10, 
             num_paths_onpol=10, 
             num_simulated_paths=1000,
             env_horizon=1000, 
             mpc_horizon=10,
             m_n_layers=2,
             m_size=500,
             ):

    start = time.time()

    # Configure output directory for logging
    logz.configure_output_dir(logdir)

    # Log experimental parameters
    args = inspect.getargspec(train_PG)[0]
    locals_ = locals()
    params = {k: locals_[k] if k in locals_ else None for k in args}
    logz.save_params(params)

    # Set random seeds
    tf.set_random_seed(seed)
    np.random.seed(seed)

    # Make the gym environment
    # env = gym.make(env_name)
    env = HalfCheetahEnvNew()
    cost_fn = cheetah_cost_fn
    activation=tf.nn.relu
    output_activation=None

    # Is this env continuous, or discrete?
    discrete = isinstance(env.action_space, gym.spaces.Discrete)

    # Maximum length for episodes
    # max_path_length = max_path_length or env.spec.max_episode_steps
    max_path_length = max_path_length

    # Observation and action sizes
    ob_dim = env.observation_space.shape[0]
    ac_dim = env.action_space.n if discrete else env.action_space.shape[0]

    # Print environment infomation
    print("-------- env info --------")
    print("Environment name: ", env_name)
    print("Action space is discrete: ", discrete)
    print("Action space dim: ", ac_dim)
    print("Observation space dim: ", ob_dim)
    print("Max_path_length ", max_path_length)




    #========================================================================================#
    # Random data collection
    #========================================================================================#

    random_controller = RandomController(env)
    data_buffer_model = DataBuffer()
    data_buffer_ppo = DataBuffer_general(10000, 4)

    # sample path
    print("collecting random data .....  ")
    paths = sample(env, 
               random_controller, 
               num_paths=num_paths_random, 
               horizon=env_horizon, 
               render=False,
               verbose=False)

    # add into buffer
    for path in paths:
        for n in range(len(path['observations'])):
            data_buffer_model.add(path['observations'][n], path['actions'][n], path['next_observations'][n])

    print("data buffer size: ", data_buffer_model.size)

    normalization = compute_normalization(data_buffer_model)

    #========================================================================================#
    # Tensorflow Engineering: Config, Session, Variable initialization
    #========================================================================================#
    tf_config = tf.ConfigProto() 
    tf_config.allow_soft_placement = True
    tf_config.intra_op_parallelism_threads =4
    tf_config.inter_op_parallelism_threads = 1
    sess = tf.Session(config=tf_config)

    dyn_model = NNDynamicsModel(env=env, 
                                n_layers=n_layers, 
                                size=size, 
                                activation=activation, 
                                output_activation=output_activation, 
                                normalization=normalization,
                                batch_size=batch_size,
                                iterations=dynamics_iters,
                                learning_rate=learning_rate,
                                sess=sess)

    mpc_controller = MPCcontroller(env=env, 
                                   dyn_model=dyn_model, 
                                   horizon=mpc_horizon, 
                                   cost_fn=cost_fn, 
                                   num_simulated_paths=num_simulated_paths)


    policy_nn = policy_network_ppo(sess, ob_dim, ac_dim, discrete, n_layers, size, learning_rate)

    if nn_baseline:
        value_nn = value_network(sess, ob_dim, n_layers, size, learning_rate)

    sess.__enter__() # equivalent to `with sess:`

    tf.global_variables_initializer().run()


    #========================================================================================#
    # Training Loop
    #========================================================================================#

    total_timesteps = 0

    for itr in range(n_iter):
        print("********** Iteration %i ************"%itr)

        if MPC:
            dyn_model.fit(data_buffer_model)
        returns = []
        costs = []

        # Collect paths until we have enough timesteps
        timesteps_this_batch = 0
        paths = []

        while True:
            # print("data buffer size: ", data_buffer_model.size)
            current_path = {'observations': [], 'actions': [], 'reward': [], 'next_observations':[]}

            ob = env.reset()
            obs, acs, mpc_acs, rewards = [], [], [], []
            animate_this_episode=(len(paths)==0 and (itr % 10 == 0) and animate)
            steps = 0
            return_ = 0
 
            while True:
                # print("steps ", steps)
                if animate_this_episode:
                    env.render()
                    time.sleep(0.05)
                obs.append(ob)

                if MPC:
                    mpc_ac = mpc_controller.get_action(ob)
                else:
                    mpc_ac = random_controller.get_action(ob)

                ac = policy_nn.predict(ob, mpc_ac)

                ac = ac[0]

                if not PG:
                    ac = mpc_ac

                acs.append(ac)
                mpc_acs.append(mpc_ac)

                current_path['observations'].append(ob)

                ob, rew, done, _ = env.step(ac)

                current_path['reward'].append(rew)
                current_path['actions'].append(ac)
                current_path['next_observations'].append(ob)

                return_ += rew
                rewards.append(rew)

                steps += 1
                if done or steps > max_path_length:
                    break


            if MPC:
                # cost & return
                cost = path_cost(cost_fn, current_path)
                costs.append(cost)
                returns.append(return_)
                print("total return: ", return_)
                print("costs: ", cost)

                # add into buffers
                for n in range(len(current_path['observations'])):
                    data_buffer_model.add(current_path['observations'][n], current_path['actions'][n], current_path['next_observations'][n])

            for n in range(len(current_path['observations'])):
                data_buffer_ppo.add(current_path['observations'][n], current_path['actions'][n], current_path['reward'][n], current_path['next_observations'][n])
        
            path = {"observation" : np.array(obs), 
                    "reward" : np.array(rewards), 
                    "action" : np.array(acs),
                    "mpc_action" : np.array(mpc_acs)}



            paths.append(path)
            timesteps_this_batch += pathlength(path)
            # print("timesteps_this_batch", timesteps_this_batch)
            if timesteps_this_batch > min_timesteps_per_batch:
                break
        total_timesteps += timesteps_this_batch


        print("data_buffer_ppo.size:", data_buffer_ppo.size)


        # Build arrays for observation, action for the policy gradient update by concatenating 
        # across paths
        ob_no = np.concatenate([path["observation"] for path in paths])
        ac_na = np.concatenate([path["action"] for path in paths])
        mpc_ac_na = np.concatenate([path["mpc_action"] for path in paths])


        # Computing Q-values
     
        if reward_to_go:
            q_n = []
            for path in paths:
                for t in range(len(path["reward"])):
                    t_ = 0
                    q = 0
                    while t_ < len(path["reward"]):
                        if t_ >= t:
                            q += gamma**(t_-t) * path["reward"][t_]
                        t_ += 1
                    q_n.append(q)
            q_n = np.asarray(q_n)

        else:
            q_n = []
            for path in paths:
                for t in range(len(path["reward"])):
                    t_ = 0
                    q = 0
                    while t_ < len(path["reward"]):
                        q += gamma**t_ * path["reward"][t_]
                        t_ += 1
                    q_n.append(q)
            q_n = np.asarray(q_n)


        # Computing Baselines
        if nn_baseline:

            # b_n = sess.run(baseline_prediction, feed_dict={sy_ob_no :ob_no})
            b_n = value_nn.predict(ob_no)
            b_n = normalize(b_n)
            b_n = denormalize(b_n, np.std(q_n), np.mean(q_n))
            adv_n = q_n - b_n
        else:
            adv_n = q_n.copy()

        # Advantage Normalization
        if normalize_advantages:
            adv_n = normalize(adv_n)

        # Optimizing Neural Network Baseline
        if nn_baseline:
            b_n_target = normalize(q_n)
            value_nn.fit(ob_no, b_n_target)
                # sess.run(baseline_update_op, feed_dict={sy_ob_no :ob_no, sy_baseline_target_n:b_n_target})


        # Performing the Policy Update

        # policy_nn.fit(ob_no, ac_na, adv_n)
        policy_nn.fit(ob_no, ac_na, adv_n, mpc_ac_na)

        # sess.run(update_op, feed_dict={sy_ob_no :ob_no, sy_ac_na:ac_na, sy_adv_n:adv_n})

        # Log diagnostics
        returns = [path["reward"].sum() for path in paths]
        ep_lengths = [pathlength(path) for path in paths]
        logz.log_tabular("Time", time.time() - start)
        logz.log_tabular("Iteration", itr)
        logz.log_tabular("AverageReturn", np.mean(returns))
        logz.log_tabular("StdReturn", np.std(returns))
        logz.log_tabular("MaxReturn", np.max(returns))
        logz.log_tabular("MinReturn", np.min(returns))
        logz.log_tabular("EpLenMean", np.mean(ep_lengths))
        logz.log_tabular("EpLenStd", np.std(ep_lengths))
        logz.log_tabular("TimestepsThisBatch", timesteps_this_batch)
        logz.log_tabular("TimestepsSoFar", total_timesteps)
        logz.dump_tabular()
        logz.pickle_tf_vars()
def train(
    env,
    cost_fn,
    logdir=None,
    render=False,
    learning_rate=1e-3,
    onpol_iters=10,
    dynamics_iters=60,
    batch_size=512,
    num_paths_random=10,
    num_paths_onpol=10,
    num_simulated_paths=10000,
    env_horizon=1000,
    mpc_horizon=15,
    n_layers=2,
    size=500,
    activation=tf.nn.relu,
    output_activation=None,
    clip_param=0.2,
    entcoeff=0.0,
    gamma=0.99,
    lam=0.95,
    optim_epochs=10,
    optim_batchsize=64,
    schedule='linear',
    optim_stepsize=3e-4,
    timesteps_per_actorbatch=1000,
    BEHAVIORAL_CLONING=True,
    PPO=True,
):

    start = time.time()

    logz.configure_output_dir(logdir)

    print("-------- env info --------")
    print("observation_space: ", env.observation_space.shape)
    print("action_space: ", env.action_space.shape)
    print("BEHAVIORAL_CLONING: ", BEHAVIORAL_CLONING)
    print("PPO: ", PPO)

    print(" ")

    random_controller = RandomController(env)
    model_data_buffer = DataBuffer()

    ppo_data_buffer = DataBuffer_general(BC_BUFFER_SIZE, 6)
    bc_data_buffer = DataBuffer_general(BC_BUFFER_SIZE, 2)

    # sample path
    print("collecting random data .....  ")
    paths = sample(env,
                   random_controller,
                   num_paths=num_paths_random,
                   horizon=env_horizon,
                   render=False,
                   verbose=False)

    # add into buffer
    for path in paths:
        for n in range(len(path['observations'])):
            model_data_buffer.add(path['observations'][n], path['actions'][n],
                                  path['next_observations'][n])

    print("model data buffer size: ", model_data_buffer.size)

    normalization = compute_normalization(model_data_buffer)

    #========================================================
    #
    # Build dynamics model and MPC controllers and Behavioral cloning network.
    #
    sess = tf.Session()

    dyn_model = NNDynamicsModel(env=env,
                                n_layers=n_layers,
                                size=size,
                                activation=activation,
                                output_activation=output_activation,
                                normalization=normalization,
                                batch_size=batch_size,
                                iterations=dynamics_iters,
                                learning_rate=learning_rate,
                                sess=sess)

    mpc_controller = MPCcontroller(env=env,
                                   dyn_model=dyn_model,
                                   horizon=mpc_horizon,
                                   cost_fn=cost_fn,
                                   num_simulated_paths=num_simulated_paths)

    policy_nn = MlpPolicy_bc(sess=sess,
                             env=env,
                             hid_size=64,
                             num_hid_layers=2,
                             clip_param=clip_param,
                             entcoeff=entcoeff)

    bc_net = BCnetwork(sess, env, BATCH_SIZE_BC, learning_rate)

    mpc_controller_bc_ppo = MPCcontroller_BC_PPO(
        env=env,
        dyn_model=dyn_model,
        bc_ppo_network=policy_nn,
        horizon=mpc_horizon,
        cost_fn=cost_fn,
        num_simulated_paths=num_simulated_paths)

    #========================================================
    #
    # Tensorflow session building.
    #
    sess.__enter__()
    tf.global_variables_initializer().run()

    # init or load checkpoint with saver
    saver = tf.train.Saver()

    checkpoint = tf.train.get_checkpoint_state(CHECKPOINT_DIR)

    if checkpoint and checkpoint.model_checkpoint_path and LOAD_MODEL:
        saver.restore(sess, checkpoint.model_checkpoint_path)
        print("checkpoint loaded:", checkpoint.model_checkpoint_path)
    else:
        print("Could not find old checkpoint")
        if not os.path.exists(CHECKPOINT_DIR):
            os.mkdir(CHECKPOINT_DIR)

    #========================================================
    #
    # Prepare for rollouts
    #

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    max_timesteps = num_paths_onpol * env_horizon

    for itr in range(onpol_iters):

        print("onpol_iters: ", itr)
        dyn_model.fit(model_data_buffer)

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)

        # saver.save(sess, CHECKPOINT_DIR)
        behavioral_cloning_eval(sess, env, policy_nn, env_horizon)

        ppo_data_buffer.clear()
        seg = traj_segment_generator(policy_nn, mpc_controller,
                                     mpc_controller_bc_ppo, bc_data_buffer,
                                     env, env_horizon)
        add_vtarg_and_adv(seg, gamma, lam)

        ob, ac, rew, nxt_ob, atarg, tdlamret = seg["ob"], seg["ac"], seg[
            "rew"], seg["nxt_ob"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        for n in range(len(ob)):
            ppo_data_buffer.add(
                (ob[n], ac[n], rew[n], nxt_ob[n], atarg[n], tdlamret[n]))
            bc_data_buffer.add((ob[n], ac[n]))
            model_data_buffer.add(ob[n], ac[n], nxt_ob[n])

        print("ppo_data_buffer size", ppo_data_buffer.size)
        print("bc_data_buffer size", bc_data_buffer.size)
        print("model data buffer size: ", model_data_buffer.size)

        # optim_batchsize = optim_batchsize or ob.shape[0]

        # behavioral_cloning(sess, env, bc_net, mpc_controller, env_horizon, bc_data_buffer, Training_epoch=1000)

        if hasattr(policy_nn, "ob_rms"):
            policy_nn.ob_rms.update(ob)  # update running mean/std for policy
        policy_nn.assign_old_eq_new(
        )  # set old parameter values to new parameter values

        for op_ep in range(optim_epochs):
            # losses = [] # list of tuples, each of which gives the loss for a minibatch
            # for i in range(int(timesteps_per_actorbatch/optim_batchsize)):

            if PPO:
                sample_ob_no, sample_ac_na, sample_rew, sample_nxt_ob_no, sample_adv_n, sample_b_n_target = ppo_data_buffer.sample(
                    optim_batchsize)
                newlosses = policy_nn.lossandupdate_ppo(
                    sample_ob_no, sample_ac_na, sample_adv_n,
                    sample_b_n_target, cur_lrmult, optim_stepsize * cur_lrmult)
                # losses.append(newlosses)

            if BEHAVIORAL_CLONING:
                sample_ob_no, sample_ac_na = bc_data_buffer.sample(
                    optim_batchsize)
                policy_nn.update_bc(sample_ob_no, sample_ac_na,
                                    optim_stepsize * cur_lrmult)

            if op_ep % 100 == 0:
                print('epcho: ', op_ep)
                behavioral_cloning_eval(sess, env, policy_nn, env_horizon)

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values

        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        ep_lengths = seg["ep_lens"]
        returns = seg["ep_rets"]

        logz.log_tabular("Time", time.time() - start)
        logz.log_tabular("Iteration", iters_so_far)
        logz.log_tabular("AverageReturn", np.mean(returns))
        logz.log_tabular("StdReturn", np.std(returns))
        logz.log_tabular("MaxReturn", np.max(returns))
        logz.log_tabular("MinReturn", np.min(returns))
        logz.log_tabular("EpLenMean", np.mean(ep_lengths))
        logz.log_tabular("EpLenStd", np.std(ep_lengths))
        # logz.log_tabular("TimestepsThisBatch", timesteps_this_batch)
        logz.log_tabular("TimestepsSoFar", timesteps_so_far)
        logz.dump_tabular()
        logz.pickle_tf_vars()