示例#1
0
def test(name_img, model, img, sr_factor, gt=False, img_gt=None):
    out_file = r'../output'
    if not os.path.exists(out_file):
        os.makedirs(out_file)
    model.eval()

    img_bicubic = img.resize(
        (int(img.size[0] * sr_factor), int(img.size[1] * sr_factor)),
        resample=PIL.Image.BICUBIC)
    img_bicubic.save(os.path.join(out_file, name_img + '_bicubic.png'))

    input = transforms.ToTensor()(img_bicubic)
    input = torch.unsqueeze(input, 0)
    input = input.to(device)
    with torch.no_grad():
        out = model(input)
    out = out.data.cpu()
    out = out.clamp(min=0, max=1)
    out = torch.squeeze(out, 0)
    out = transforms.ToPILImage()(out)
    out.save(os.path.join(out_file, name_img + '_zssr.png'))

    if gt:
        ssim_bicubic = compute_ssim(img_gt, img_bicubic)
        psnr_bicubic = compute_psnr(img_gt, img_bicubic)
        ssim_zssr = compute_ssim(img_gt, out)
        psnr_zssr = compute_psnr(img_gt, out)
        print("psnr_bicubic:\t{:.2f}".format(psnr_bicubic))
        print("ssim_bicubic:\t{:.4f}".format(ssim_bicubic))
        print("psnr_zssr:\t{:.2f}".format(psnr_zssr))
        print("ssim_zssr:\t{:.4f}".format(ssim_zssr))
        fo = open(os.path.join(out_file, 'PSNR_and_SSIM.txt'), mode='a')
        fo.write(str(name_img) + ':\n')
        fo.write(
            '\tbicubic: psnr:{:.2f}\tssim:{:.4f}\tzssr: psnr:{:.2f}\tssim:{:.4f}\n'
            .format(psnr_bicubic, ssim_bicubic, psnr_zssr, ssim_zssr))
        return ssim_bicubic, psnr_bicubic, ssim_zssr, psnr_zssr
示例#2
0
文件: test.py 项目: dota-109/WRSD
def test(path, testing_loader, pae):
    i = 1
    model = torch.load(path, map_location='cuda:0')
    model.eval()
    mse = torch.nn.MSELoss()
    avg_ssim = 0
    avg_psnr = 0
    max_bound = 0
    avg_time_consume = 0
    with torch.no_grad():
        for batch_num, (data, target) in enumerate(testing_loader):
            data, target = data.cuda(), target.cuda()
            time_start = time.time()
            prediction = model(data)
            torch.cuda.synchronize()
            time_end = time.time()
            avg_time_consume += (time_end - time_start)
            prediction = (prediction.cpu() * 128 * pae * 0.7 + 128)
            target = (target.cpu() * 128 * pae * 0.7 + 128)
            mse_value = mse(prediction, target)
            psnr = 10 * log10(65025 / mse_value.item())
            avg_psnr += psnr
            abs_value = np.abs(prediction - target)
            abs_value = abs_value.numpy()
            if abs_value.max() > max_bound:

                max_bound = abs_value.max()
            prediction = prediction.numpy()

            prediction = np.reshape(prediction,
                                    (prediction.shape[2], prediction.shape[3]))
            target = np.reshape(target, (target.shape[2], target.shape[3]))
            ssim = compute_ssim(prediction, target)
            avg_ssim += ssim
            i += 1
    print("  The pae is: {}".format(pae))
    print("  Average PSNR: {:.2f} dB".format(avg_psnr / len(testing_loader)))
    print("  Average SSIM: {:.4f} dB".format(avg_ssim / len(testing_loader)))
    print("  bound: {:.3f}".format(max_bound))
    print("  Average time consumption: {:.3f} s".format(avg_time_consume /
                                                        len(testing_loader)))
示例#3
0
def test(path, testing_loader, pae):
    model = torch.load(path)

    model.eval()
    mse = torch.nn.MSELoss()
    avg_ssim = 0
    avg_psnr = 0
    max_bound = 0
    with torch.no_grad():
        for batch_num, (data, target) in enumerate(testing_loader):
            data, target = data.cuda(), target.cuda()
            prediction = model(data)
            prediction = (prediction.cpu() * 128 * pae * 0.7 + 128)
            target = (target.cpu() * 128 * pae * 0.7 + 128)

            mse_value = mse(prediction, target)
            psnr = 10 * log10(65025 / mse_value.item())
            avg_psnr += psnr
            progress_bar(batch_num, len(testing_loader),
                         'PSNR: %.4f' % (avg_psnr / (batch_num + 1)))
            abs_value = np.abs(prediction - target)
            abs_value = abs_value.numpy()
            if abs_value.max() > max_bound:

                max_bound = abs_value.max()
            prediction = prediction.numpy()

            prediction = np.reshape(prediction,
                                    (prediction.shape[2], prediction.shape[3]))
            target = np.reshape(target, (target.shape[2], target.shape[3]))
            ssim = compute_ssim(prediction, target)
            avg_ssim += ssim
            # break

    print("  Average PSNR: {:.4f} dB".format(avg_psnr / len(testing_loader)))
    print("  Average SSIM: {:.4f} dB".format(avg_ssim / len(testing_loader)))
    print("bound: " + str(max_bound))
    return avg_psnr / len(testing_loader), avg_ssim / len(
        testing_loader), max_bound
示例#4
0
            torch.cuda.synchronize()
            time_list[i] = start.elapsed_time(end)  # milliseconds
        else:
            start.record()
            out = crop_forward(im_input, model)
            end.record()
            torch.cuda.synchronize()
            time_list[i] = start.elapsed_time(end)  # milliseconds

    sr_img = utils.tensor2np(out.detach()[0])
    if opt.is_y is True:
        im_label = utils.quantize(sc.rgb2ycbcr(im_gt)[:, :, 0])
        im_pre = utils.quantize(sc.rgb2ycbcr(sr_img)[:, :, 0])
    else:
        im_label = im_gt
        im_pre = sr_img
    psnr_list[i] = utils.compute_psnr(im_pre, im_label)
    ssim_list[i] = utils.compute_ssim(im_pre, im_label)

    output_folder = os.path.join(opt.output_folder, imname.split('/')[-1])

    if not os.path.exists(opt.output_folder):
        os.makedirs(opt.output_folder)

    sio.imsave(output_folder, sr_img)
    i += 1

print("Mean PSNR: {}, SSIM: {}, Time: {} ms".format(np.mean(psnr_list),
                                                    np.mean(ssim_list),
                                                    np.mean(time_list)))
示例#5
0
        out_img_p = out_p.detach().numpy().squeeze()
        out_img_p = utils.convert_shape(out_img_p)

    if opt.isHR:
        if opt.only_y is True:
            im_label = utils.quantize(sc.rgb2ycbcr(im_gt)[:, :, 0])
            im_pre = utils.quantize(sc.rgb2ycbcr(out_img_c)[:, :, 0])
        else:
            im_label = im_gt
            im_pre = out_img_c

        psnr_sr[i] = utils.compute_psnr(
            utils.shave(im_label, opt.upscale_factor),
            utils.shave(im_pre, opt.upscale_factor))
        ssim_sr[i] = utils.compute_ssim(
            utils.shave(im_label, opt.upscale_factor),
            utils.shave(im_pre, opt.upscale_factor))
    i += 1

    output_c_folder = os.path.join(
        opt.output_folder,
        imname.split('/')[-1].split('.')[0] + '_c.png')
    output_s_folder = os.path.join(
        opt.output_folder,
        imname.split('/')[-1].split('.')[0] + '_s.png')
    output_p_folder = os.path.join(
        opt.output_folder,
        imname.split('/')[-1].split('.')[0] + '_p.png')

    if not os.path.exists(opt.output_folder):
        os.makedirs(opt.output_folder)
示例#6
0
        with torch.no_grad():
            for gt_vid in validation_generator:

                gt_vid = gt_vid.cuda()
                if not args.two_bucket:
                    # b1 = c2b(gt_vid) # (N,1,H,W)
                    b1 = torch.mean(gt_vid, dim=1, keepdim=True)
                    # interm_vid = utils.impulse_inverse(b1, block_size=args.blocksize)
                    highres_vid = uNet(b1)  # (N,16,H,W)
                else:
                    b1, b0 = c2b(gt_vid)
                    b_stack = torch.cat([b1, b0], dim=1)
                    highres_vid = uNet(b_stack)

                val_psnr_sum += utils.compute_psnr(highres_vid, gt_vid).item()
                val_ssim_sum += utils.compute_ssim(highres_vid, gt_vid).item()

                ## loss
                final_loss = utils.weighted_L1loss(highres_vid, gt_vid)
                tv_loss = utils.gradx(highres_vid).abs().mean() + utils.grady(
                    highres_vid).abs().mean()
                val_loss_sum += (final_loss + 0.1 * tv_loss).item()

                if val_iter % 1000 == 0:
                    print('In val iter %d' % (val_iter))

                val_iter += 1

        logging.info('Total val iterations: %d' % (val_iter))
        logging.info(
            'Finished validation with loss: %.4f psnr: %.4f ssim: %.4f' %
time.sleep(2.0)

# batch process
for filename in os.listdir(args["path"]):
    print(filename)
    try:
        image = cv2.imread(args["path"] + "/" + filename, 1)
        t1 = time.time()
        upscaled = sr.upsample(image)
        t2 = time.time()
        bicubic = cv2.resize(image, (upscaled.shape[1], upscaled.shape[0]),
                             interpolation=cv2.INTER_CUBIC)

        (B1, G1, R1) = cv2.split(bicubic)
        (B2, G2, R2) = cv2.split(upscaled)
        ssim1 = compute_ssim(B1, B2)
        ssim2 = compute_ssim(G1, G2)
        ssim3 = compute_ssim(R1, R2)
        mssim = (ssim1 + ssim2 + ssim3) / 3
        mssim_res = str(round(mssim *
                              100)) + 'E-2' if mssim < 1 else str(mssim)
        psnr1 = psnr(B1, B2)
        psnr2 = psnr(G1, G2)
        psnr3 = psnr(R1, R2)
        mpsnr = (psnr1 + psnr2 + psnr3) / 3
        mpsnr_res = str(round(mpsnr * 100)) + 'E-2' if mpsnr < 1 else str(
            round(mpsnr))
        out_filename = filename.split(".png")[0] + "_" + str(
            modelName) + "_x" + str(modelScale) + "_t" + str(round(
                t2 - t1,
                2)) + "_s" + str(mssim_res) + "_p" + str(mpsnr_res) + ".png"
示例#8
0
        with torch.no_grad():
            for gt_vid in validation_generator:

                gt_vid = gt_vid.cuda()
                if not args.two_bucket:
                    b1 = c2b(gt_vid)  # (N,1,H,W)
                    # b1 = torch.mean(gt_vid, dim=1, keepdim=True)
                    interm_vid = invNet(b1)
                else:
                    b1, b0 = c2b(gt_vid)
                    b_stack = torch.cat([b1, b0], dim=1)
                    interm_vid = invNet(b_stack)
                highres_vid = uNet(interm_vid)  # (N,9,H,W)

                val_psnr_sum += utils.compute_psnr(highres_vid, gt_vid).item()
                val_ssim_sum += utils.compute_ssim(highres_vid, gt_vid).item()

                psnr = utils.compute_psnr(highres_vid,
                                          gt_vid).item() / gt_vid.shape[0]
                ssim = utils.compute_ssim(highres_vid,
                                          gt_vid).item() / gt_vid.shape[0]

                ## loss
                if args.intermediate:
                    interm_loss = utils.weighted_L1loss(interm_vid,
                                                        gt_vid).item()
                final_loss = utils.weighted_L1loss(highres_vid, gt_vid).item()
                tv_loss = utils.gradx(highres_vid).abs().mean().item(
                ) + utils.grady(highres_vid).abs().mean().item()

                if args.intermediate: