def _data_preprocess(self, dataset, fold, split): """Preprocess the dataset. Returns feature, label and previous features. Args: - dataset: temporal, static, label, time, treatment information - fold: Cross validation fold - split: 'train', 'valid' or 'test' Returns: - x: temporal feature - y: labels - previous_x: previous features """ # Set temporal, static, label, and time information x, s, y, t, _ = dataset.get_fold(fold, split) # Concatenate static features if self.static_mode == 'concatenate': if s is not None: x = concate_xs(x, s) # Concatenate time information if self.time_mode == 'concatenate': if t is not None: x = concate_xt(x, t) # Define previous temporal features (push one time stamp) previous_x = x.copy() for i in range(len(x)): previous_x[i][1:, :] = previous_x[i][:-1, :] previous_x[i][0, :] = -np.ones([len(x[i][0, :])]) return x, y, previous_x
def data_preprocess(self, dataset, fold, split): """Preprocess the dataset. Args: - dataset: temporal, static, label, time, treatment information - fold: Cross validation fold - split: 'train', 'valid' or 'test' Returns: - x: temporal feature - y_hat: predictions of the predictor model """ # Set temporal, static, and time information x, s, _, t, _ = dataset.get_fold(fold, split) # Label is the prediction of the predictor y_hat = self.predictor_model.predict(dataset, test_split=split) # Static & Time information concatenating if self.static_mode == 'concatenate': if s is not None: x = concate_xs(x, s) if self.time_mode == 'concatenate': if t is not None: x = concate_xt(x, t) return x, y_hat
def _data_preprocess(self, dataset, fold, split): """Preprocess the dataset. Returns feature and label. Args: - dataset: temporal, static, label, time, treatment information - fold: Cross validation fold - split: 'train', 'valid' or 'test' Returns: - x: temporal feature - y: labels """ # Set temporal, static, label, and time information x, s, y, t, _ = dataset.get_fold(fold, split) if self.static_mode == 'concatenate': if s is not None: x = concate_xs(x, s) if self.time_mode == 'concatenate': if t is not None: x = concate_xt(x, t) return x, y