示例#1
0
def get_relative_rotation_y(agent, player):
    """ Returns the relative rotation of the agent to the camera in yaw
    The relative rotation is the difference between the camera rotation (on car) and the agent rotation"""
    # We only car about the rotation for the classes we do detection on
    if agent.get_transform():
        rot_agent = agent.get_transform().rotation.yaw
        rot_car = player.get_transform().rotation.yaw
        return degrees_to_radians(rot_agent - rot_car)
def get_relative_rotation_y(agent, player_measurements):
    """ Returns the relative rotation of the agent to the camera in yaw
    The relative rotation is the difference between the camera rotation (on car) and the agent rotation"""
    # We only car about the rotation for the classes we do detection on
    if agent.vehicle.transform:
        rot_agent = agent.vehicle.transform.rotation.yaw
        rot_car = player_measurements.transform.rotation.yaw
        # print("=========================================", rot_agent, rot_car)
        return degrees_to_radians(rot_agent - rot_car)
def save_groundplanes(planes_fname, player_measurements, lidar_height):
    from math import cos, sin
    """ Saves the groundplane vector of the current frame.
        The format of the ground plane file is first three lines describing the file (number of parameters).
        The next line is the three parameters of the normal vector, and the last is the height of the normal vector,
        which is the same as the distance to the camera in meters.
    """
    rotation = player_measurements.transform.rotation
    pitch, roll = rotation.pitch, rotation.roll
    # Since measurements are in degrees, convert to radians
    pitch = degrees_to_radians(pitch)
    roll = degrees_to_radians(roll)
    # Rotate normal vector (y) wrt. pitch and yaw
    normal_vector = [
        cos(pitch) * sin(roll), -cos(pitch) * cos(roll),
        sin(pitch)
    ]
    normal_vector = map(str, normal_vector)
    with open(planes_fname, 'w') as f:
        f.write("# Plane\n")
        f.write("Width 4\n")
        f.write("Height 1\n")
        f.write("{} {}\n".format(" ".join(normal_vector), lidar_height))
    logging.info("Wrote plane data to %s", planes_fname)
示例#4
0
def processing(world, image_rgb, image_depth, image_lidar, intrinsic, player,
               agents, camera_to_car_transform, lidar_to_car_transform,
               gen_time):
    if image_rgb is not None and image_depth is not None:
        # Convert main image
        image = to_rgb_array(image_rgb)
        extrinsic = get_matrix(
            player.get_transform()) * camera_to_car_transform

        # Retrieve and draw datapoints
        #IMAGE IS AN ARRAY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        image, datapoints = generate_datapoints(world, image, intrinsic,
                                                extrinsic, image_depth, player,
                                                agents, gen_time)

        #Lidar signal processing
        # Calculation to shift bboxes relative to pitch and roll of player
        rotation = player.get_transform().rotation
        pitch, roll, yaw = rotation.pitch, rotation.roll, rotation.yaw
        # Since measurements are in degrees, convert to radians

        pitch = degrees_to_radians(pitch)
        roll = degrees_to_radians(roll)
        yaw = degrees_to_radians(yaw)
        #print('pitch: ', pitch)
        #print('roll: ', roll)
        #print('yaw: ', yaw)

        # Rotation matrix for pitch
        rotP = np.array([[cos(pitch), 0, sin(pitch)], [0, 1, 0],
                         [-sin(pitch), 0, cos(pitch)]])
        # Rotation matrix for roll
        rotR = np.array([[1, 0, 0], [0, cos(roll), -sin(roll)],
                         [0, sin(roll), cos(roll)]])

        # combined rotation matrix, must be in order roll, pitch, yaw
        rotRP = np.matmul(rotR, rotP)
        # Take the points from the point cloud and transform to car space
        pc_arr_cpy = np.frombuffer(image_lidar.raw_data, dtype=np.dtype('f4'))
        #print(pc_arr.shape)
        pc_arr = np.reshape(pc_arr_cpy,
                            (int(pc_arr_cpy.shape[0] / 4), 4))[:, :3].copy()
        #print(pc_arr.shape)
        pc_arr[:, [0, 2]] = -pc_arr[:, [0, 2]]
        pc_arr[:, [0, 1]] = pc_arr[:, [1, 0]]
        #print(pc_arr.shape)
        point_cloud = np.array(transform_points(pc_arr,
                                                lidar_to_car_transform))
        #print(lidar_to_car_transform)
        point_cloud[:, 2] -= LIDAR_HEIGHT_POS
        #print(point_cloud.shape)
        point_cloud = np.matmul(rotRP, point_cloud.T).T
        # print(self._lidar_to_car_transform.matrix)
        # print(self._camera_to_car_transform.matrix)

        # Draw lidar
        # Camera coordinate system is left, up, forwards
        if VISUALIZE_LIDAR:
            # Transform to camera space by the inverse of camera_to_car transform
            point_cloud_cam = transform_points(
                point_cloud, np.linalg.inv(camera_to_car_transform))
            point_cloud_cam[:, 1] += LIDAR_HEIGHT_POS
            image = lidar_utils.project_point_cloud(image, point_cloud_cam,
                                                    intrinsic, 1)

        #determine whether to save data
        #TO_DO!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

        if image is not None:
            return image, datapoints, point_cloud, extrinsic
        else:
            logging.debug("Image is None")
示例#5
0
    def __init__(self,
                 tcp_host_ip,
                 tcp_port,
                 rtc_host_ip,
                 rtc_port,
                 camera_calibration_file=''):

        # Connect to robot client
        self.tcp_host_ip = tcp_host_ip
        self.tcp_port = tcp_port

        # Connect as real-time client to parse state data
        self.rtc_host_ip = rtc_host_ip
        self.rtc_port = rtc_port

        # Default home joint configuration
        self.home_joint_config = [
            utils.degrees_to_radians(90),  #BASE
            utils.degrees_to_radians(-135),  #HOMBRO
            utils.degrees_to_radians(145),  #CODO
            utils.degrees_to_radians(-100),  #MUÑ1
            utils.degrees_to_radians(270),  #MUÑ2
            utils.degrees_to_radians(0),  #MUÑ3
        ]

        # Default photo joint configuration
        self.photo_joint_config = [
            utils.degrees_to_radians(115.60),  #BASE
            utils.degrees_to_radians(-57.30),  #HOMBRO
            utils.degrees_to_radians(8.65),  #CODO
            utils.degrees_to_radians(-40.91),  #MUÑ1
            utils.degrees_to_radians(273.94),  #MUÑ2
            utils.degrees_to_radians(-65.93),  #MUÑ3
        ]

        # Default joint speed configuration
        self.JOINT_ACC_DEFAULT = 8
        self.JOINT_VEL_DEFAULT = 3
        self.JOINT_ACC_SAFE = 1.4
        self.JOINT_VEL_SAFE = 1.05
        self.joint_acc = self.JOINT_ACC_DEFAULT  # default: 8, safe: 1.4 m/s^2
        self.joint_vel = self.JOINT_VEL_DEFAULT  # default: 3, safe: 1.05 m/s

        # Joint tolerance for blocking calls
        self.joint_tolerance = 0.1

        # Default tool speed configuration
        self.TOOL_ACC_DEFAULT = 1.2
        self.TOOL_VEL_DEFAULT = 0.25
        self.TOOL_ACC_SAFE = 0.5
        self.TOOL_VEL_SAFE = 0.2
        self.tool_acc = self.TOOL_ACC_DEFAULT  # default: 1.2, safe: 0.5
        self.tool_vel = self.TOOL_VEL_DEFAULT  # default: 0.25, safe: 0.2

        # Tool pose tolerance for blocking calls
        self.tool_pose_tolerance = [0.002, 0.002, 0.002, 0.01, 0.01, 0.01]

        # Fetch RGB-D data from RealSense camera
        self.camera = Camera()

        # Load camera pose (from running calibrate.py), intrinsics and depth scale
        self.cam_pose = np.loadtxt('camera_pose.txt', delimiter=' ')
        self.cam_depth_scale = np.loadtxt('camera_depth_scale.txt',
                                          delimiter=' ')
    def _generate_datapoints(self, image):
        """ Returns a list of datapoints (labels and such) that are generated this frame together with the main image image """
        datapoints = {}

        # print('{0:06}.jpg'.format(self.captured_frame_no))

        imgNameFmt = os.path.join("{0}", "{1:06}.jpg")
        datapoints['name'] = imgNameFmt.format(TIME_ON_NEW_EPISODE,
                                               self.captured_frame_no)
        datapoints['videoName'] = TIME_ON_NEW_EPISODE
        # datapoints.append(imgNameFmt.format(TIME_ON_NEW_EPISODE, self.captured_frame_no))

        datapoints['resolution'] = {'width': 1920, 'height': 1080}
        datapoints['attributes'] = {
            "weather": "clouds",
            "scene": "undefined",
            "timeofday": "noon"
        }
        datapoints['intrinsics'] = {
            "focal": [960.0000000000001, 960.0000000000001],
            "center": [960, 540],
            "fov":
            90.0,
            "nearClip":
            0.15,
            "cali": [[960.0000000000001, 0, 960, 0],
                     [0, 960.0000000000001, 540, 0], [0, 0, 1, 0]]
        }

        rot = self._measurements.player_measurements.transform.rotation
        loc = self._measurements.player_measurements.transform.location

        datapoints['extrinsics'] = {
            "location": [-loc.x, -loc.y, loc.z],
            "rotation": [
                degrees_to_radians(rot.pitch),
                degrees_to_radians(rot.roll),
                degrees_to_radians(rot.yaw)
            ]
        }

        datapoints['timestamp'] = int(time.time())
        datapoints['frameIndex'] = self.captured_frame_no

        image = image.copy()

        # Remove this
        rotRP = np.identity(3)
        datapoints['labels'] = []

        # Stores all datapoints for the current frames
        for agent in self._measurements.non_player_agents:
            if should_detect_class(agent) and GEN_DATA:
                image, kitti_datapoint = create_kitti_datapoint(
                    agent, self._intrinsic, self._extrinsic.matrix, image,
                    self._depth_image, self._measurements.player_measurements,
                    rotRP)
                if kitti_datapoint:

                    orientation = degrees_to_radians(
                        agent.vehicle.transform.rotation.yaw)

                    ob_center_x = (kitti_datapoint.bbox[2] +
                                   kitti_datapoint.bbox[0]) / 2

                    rotation_y2alpha = orientation - np.arctan2(
                        960.0000000000001, (ob_center_x - 960))
                    rotation_y2alpha = rotation_y2alpha % (2 * np.pi) - np.pi
                    # print(kitti_datapoint)
                    datapoints['labels'].append({
                        'id': int(agent.id),
                        'category': kitti_datapoint.type,
                        'manualShape': False,
                        'manualAttributes': False,
                        'attributes': {
                            "occluded": kitti_datapoint.occluded,
                            "truncated": kitti_datapoint.truncated,
                            "ignore": False
                        },
                        'box2d': {
                            'x1': kitti_datapoint.bbox[0],
                            'y1': kitti_datapoint.bbox[1],
                            'x2': kitti_datapoint.bbox[2],
                            'y2': kitti_datapoint.bbox[3],
                            'confidence': 1.0
                        },
                        'box3d': {
                            "alpha": rotation_y2alpha,
                            "orientation": orientation,
                            "location": kitti_datapoint.location,
                            "dimension": kitti_datapoint.dimensions
                        }
                    })

        return image, datapoints
    def _on_render(self):
        datapoints = []

        if self._main_image is not None and self._depth_image is not None:
            # Convert main image
            image = image_converter.to_rgb_array(self._main_image)

            # Retrieve and draw datapoints
            image, datapoints = self._generate_datapoints(image)

            # Draw lidar
            # Camera coordinate system is left, up, forwards
            if VISUALIZE_LIDAR:
                # Calculation to shift bboxes relative to pitch and roll of player
                rotation = self._measurements.player_measurements.transform.rotation
                pitch, roll, yaw = rotation.pitch, rotation.roll, rotation.yaw
                # Since measurements are in degrees, convert to radians

                pitch = degrees_to_radians(pitch)
                roll = degrees_to_radians(roll)
                yaw = degrees_to_radians(yaw)
                print('pitch: ', pitch)
                print('roll: ', roll)
                print('yaw: ', yaw)

                # Rotation matrix for pitch
                rotP = np.array([[cos(pitch), 0, sin(pitch)], [0, 1, 0],
                                 [-sin(pitch), 0, cos(pitch)]])
                # Rotation matrix for roll
                rotR = np.array([[1, 0, 0], [0, cos(roll), -sin(roll)],
                                 [0, sin(roll), cos(roll)]])

                # combined rotation matrix, must be in order roll, pitch, yaw
                rotRP = np.matmul(rotR, rotP)
                # Take the points from the point cloud and transform to car space
                point_cloud = np.array(
                    self._lidar_to_car_transform.transform_points(
                        self._lidar_measurement.data))
                point_cloud[:, 2] -= LIDAR_HEIGHT_POS
                point_cloud = np.matmul(rotRP, point_cloud.T).T
                # print(self._lidar_to_car_transform.matrix)
                # print(self._camera_to_car_transform.matrix)
                # Transform to camera space by the inverse of camera_to_car transform
                point_cloud_cam = self._camera_to_car_transform.inverse(
                ).transform_points(point_cloud)
                point_cloud_cam[:, 1] += LIDAR_HEIGHT_POS
                image = lidar_utils.project_point_cloud(
                    image, point_cloud_cam, self._intrinsic, 1)

            # Display image
            surface = pygame.surfarray.make_surface(image.swapaxes(0, 1))
            self._display.blit(surface, (0, 0))
            if self._map_view is not None:
                self._display_agents(self._map_view)
            pygame.display.flip()

            # Determine whether to save files
            distance_driven = self._distance_since_last_recording()
            #print("Distance driven since last recording: {}".format(distance_driven))
            has_driven_long_enough = distance_driven is None or distance_driven > DISTANCE_SINCE_LAST_RECORDING
            if (self._timer.step + 1) % STEPS_BETWEEN_RECORDINGS == 0:
                if has_driven_long_enough and datapoints:
                    # Avoid doing this twice or unnecessarily often
                    if not VISUALIZE_LIDAR:
                        # Calculation to shift bboxes relative to pitch and roll of player
                        rotation = self._measurements.player_measurements.transform.rotation
                        pitch, roll, yaw = rotation.pitch, rotation.roll, rotation.yaw
                        # Since measurements are in degrees, convert to radians

                        pitch = degrees_to_radians(pitch)
                        roll = degrees_to_radians(roll)
                        yaw = degrees_to_radians(yaw)
                        print('pitch: ', pitch)
                        print('roll: ', roll)
                        print('yaw: ', yaw)

                        # Rotation matrix for pitch
                        rotP = np.array([[cos(pitch), 0,
                                          sin(pitch)], [0, 1, 0],
                                         [-sin(pitch), 0,
                                          cos(pitch)]])
                        # Rotation matrix for roll
                        rotR = np.array([[1, 0, 0], [0,
                                                     cos(roll), -sin(roll)],
                                         [0, sin(roll),
                                          cos(roll)]])

                        # combined rotation matrix, must be in order roll, pitch, yaw
                        rotRP = np.matmul(rotR, rotP)
                        # Take the points from the point cloud and transform to car space
                        point_cloud = np.array(
                            self._lidar_to_car_transform.transform_points(
                                self._lidar_measurement.data))
                        point_cloud[:, 2] -= LIDAR_HEIGHT_POS
                        point_cloud = np.matmul(rotRP, point_cloud.T).T
                    self._update_agent_location()
                    # Save screen, lidar and kitti training labels together with calibration and groundplane files
                    self._save_training_files(datapoints, point_cloud)
                    self.captured_frame_no += 1
                    self._captured_frames_since_restart += 1
                    self._frames_since_last_capture = 0
                else:
                    logging.debug(
                        "Could save datapoint, but agent has not driven {} meters since last recording (Currently {} meters)"
                        .format(DISTANCE_SINCE_LAST_RECORDING,
                                distance_driven))
            else:
                self._frames_since_last_capture += 1
                logging.debug(
                    "Could not save training data - no visible agents of selected classes in scene"
                )
    def _on_render(self):
        datapoints = []

        if self._main_image is not None and self._depth_image is not None:
            # Convert main image
            image = image_converter.to_rgb_array(self._main_image)

            # Retrieve and draw datapoints
            image, datapoints = self._generate_datapoints(image)

            # Draw lidar
            # Camera coordinate system is left, up, forwards
            if VISUALIZE_LIDAR:
                # Calculation to shift bboxes relative to pitch and roll of player
                rotation = self._measurements.player_measurements.transform.rotation
                pitch, roll, yaw = rotation.pitch, rotation.roll, rotation.yaw
                # Since measurements are in degrees, convert to radians

                pitch = degrees_to_radians(pitch)
                roll = degrees_to_radians(roll)
                yaw = degrees_to_radians(yaw)
                print('pitch: ', pitch)
                print('roll: ', roll)
                print('yaw: ', yaw)

                # Rotation matrix for pitch
                rotP = np.array([[cos(pitch), 0, sin(pitch)], [0, 1, 0],
                                 [-sin(pitch), 0, cos(pitch)]])
                # Rotation matrix for roll
                rotR = np.array([[1, 0, 0], [0, cos(roll), -sin(roll)],
                                 [0, sin(roll), cos(roll)]])

                # combined rotation matrix, must be in order roll, pitch, yaw
                rotRP = np.matmul(rotR, rotP)
                # Take the points from the point cloud and transform to car space
                point_cloud = np.array(
                    self._lidar_to_car_transform.transform_points(
                        self._lidar_measurement.data))
                point_cloud[:, 2] -= LIDAR_HEIGHT_POS
                point_cloud = np.matmul(rotRP, point_cloud.T).T
                # Transform to camera space by the inverse of camera_to_car transform
                point_cloud_cam = self._camera_to_car_transform.inverse(
                ).transform_points(point_cloud)
                point_cloud_cam[:, 1] += LIDAR_HEIGHT_POS
                image = lidar_utils.project_point_cloud(
                    image, point_cloud_cam, self._intrinsic, 1)

            # Display image
            surface = pygame.surfarray.make_surface(image.swapaxes(0, 1))
            self._display.blit(surface, (0, 0))
            pygame.display.flip()

            if (self._timer.step + 1) % STEPS_BETWEEN_RECORDINGS == 0:
                if datapoints:
                    # Avoid doing this twice or unnecessarily often
                    if not VISUALIZE_LIDAR:
                        # Calculation to shift bboxes relative to pitch and roll of player
                        rotation = self._measurements.player_measurements.transform.rotation
                        pitch, roll, yaw = rotation.pitch, rotation.roll, rotation.yaw
                        # Since measurements are in degrees, convert to radians

                        pitch = degrees_to_radians(pitch)
                        roll = degrees_to_radians(roll)
                        yaw = degrees_to_radians(yaw)
                        print('pitch: ', pitch)
                        print('roll: ', roll)
                        print('yaw: ', yaw)

                        # Rotation matrix for pitch
                        rotP = np.array([[cos(pitch), 0,
                                          sin(pitch)], [0, 1, 0],
                                         [-sin(pitch), 0,
                                          cos(pitch)]])
                        # Rotation matrix for roll
                        rotR = np.array([[1, 0, 0], [0,
                                                     cos(roll), -sin(roll)],
                                         [0, sin(roll),
                                          cos(roll)]])

                        # combined rotation matrix, must be in order roll, pitch, yaw
                        rotRP = np.matmul(rotR, rotP)
                        # Take the points from the point cloud and transform to car space
                        point_cloud = np.array(
                            self._lidar_to_car_transform.transform_points(
                                self._lidar_measurement.data))
                        point_cloud[:, 2] -= LIDAR_HEIGHT_POS
                        point_cloud = np.matmul(rotRP, point_cloud.T).T
                    self._update_agent_location()
                    # Save screen, lidar and kitti training labels together with calibration and groundplane files
                    # self._save_training_files(datapoints, point_cloud)
                    img = get_image_data(
                        image_converter.to_rgb_array(self._main_image))
                    lid = get_lidar_data(point_cloud)
                    calib = get_calibration_matrices(self._intrinsic,
                                                     self._extrinsic)
                    mess = {
                        "idx": self.captured_frame_no,
                        "image_2": img,
                        "velodyne": lid,
                        "calib": calib
                    }
                    annos = self.evaluator.predict(mess)

                    # annos = self.evaluator.evaluate(self.captured_frame_no)
                    print(annos)
                    scores = annos["score"]
                    vertices = annos["vertices"]
                    bbox = annos["bbox"]

                    for i, score in enumerate(scores):
                        if score * 100 > 35:
                            # draw 3D
                            image = draw_projected_box3d(image,
                                                         vertices[i],
                                                         color=(0, 0, 255),
                                                         thickness=1)
                            image = cv2.putText(
                                image, str(round(score * 100, 2)),
                                (int(bbox[i][0]), int(bbox[i][1])),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 0, 255),
                                1, cv2.LINE_AA)
                            # draw 2D
                            # bbox = annos["bbox"]
                            # x1, y1, x2, y2 = bbox[i]
                            # cv2.rectangle(image, pt1=(x1, y1), pt2=(x2, y2), color=(0, 0, 255), thickness=2)

                    # Display image
                    surface = pygame.surfarray.make_surface(
                        image.swapaxes(0, 1))
                    self._display.blit(surface, (0, 0))
                    pygame.display.flip()
                    self.captured_frame_no += 1
                    self._captured_frames_since_restart += 1
                    self._frames_since_last_capture = 0
                    time.sleep(0.5)
                else:
                    logging.debug("Could save datapoint".format(
                        DISTANCE_SINCE_LAST_RECORDING))
            else:
                self._frames_since_last_capture += 1
                logging.debug(
                    "Could not save training data - no visible agents of selected classes in scene"
                )