示例#1
0
def build_words_model(query_tokens_count, rules_count, nodes_count,
                      words_count):
    words_query_encoder, words_query_encoder_pc = build_query_encoder_for_words(
        query_tokens_count, batch_size=BATCH_SIZE)
    words_encoder, words_encoder_pc = build_words_encoder(
        rules_count, nodes_count)
    words_decoder, words_decoder_pc = build_words_decoder(words_encoder)
    copy_mechanism, copy_mechanism_pc = build_copy_mechanism(
        words_query_encoder.all_states, words_decoder.all_states, words_count)

    with variable_scope('loss'):
        words_loss, words_stats = build_words_loss(copy_mechanism,
                                                   words_decoder_pc,
                                                   copy_mechanism_pc)

        stacked_words_loss = tf.stack(list(words_loss.values()))

        loss = tf.reduce_sum(stacked_words_loss)

    with variable_scope('l2_loss'):
        variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
        l2_variables = [
            v for v in variables if v.name.split('/')[-1].startswith('kernel')
        ]
        l2_losses = [tf.nn.l2_loss(v) for v in l2_variables]
        l2_loss = L2_COEFFICIENT * tf.reduce_sum(l2_losses)
        loss_with_l2 = loss + l2_loss

    placeholders = WordsModelPlaceholders(words_query_encoder_pc,
                                          words_encoder_pc, words_decoder_pc,
                                          copy_mechanism_pc)

    stats = dict_to_object(words_stats)
    model = WordsModel(placeholders, loss, loss_with_l2, stats)
    return model
示例#2
0
def syns_all(save_data=False):
    best_chain = sync_local()
    for peer in cnst.PEERS:

        peer_block_chain_url = peer + 'blockchain'

        try:
            req = requests.get(peer_block_chain_url)
            peer_blockchain_dict = req.json()
            peer_blocks = [
                dict_to_object(bcDict) for bcDict in peer_blockchain_dict
            ]
            peer_chain = BlockChain()
            peer_chain.chainList = peer_blocks

            if block_chain.isValid(chainList=peer_blocks) and len(
                    peer_chain.chainList) > len(best_chain.chainList):
                best_chain = peer_chain
        except requests.exceptions.ConnectionError as e:
            print(e)

    if save_data:
        best_chain.save_block_chain()

    return best_chain
def train(term_args):
    myalgo_args = args.copy()
    method = 'direct'
    for init_std, y2_max in product([0.3, 1.0], [0.025, 0.050, 0.100]):
        myalgo_args.update({
            'label': term_args.label,
            'env_name': term_args.env,
            'method': method,
            'init_std': init_std,
            'y2_max': y2_max,
        })
    myalgo_args = dict_to_object(myalgo_args)
    test(myalgo_args, term_args.label)

    myalgo_args = args.copy()
    method = 'ES'
    for init_std, step_size in product([0.3, 1.0], [0.05, 0.10, 0.50, 1.00]):
        myalgo_args.update({
            'label': term_args.label,
            'env_name': term_args.env,
            'method': method,
            'init_std': init_std,
            'step_size': y2_max,
        })
    myalgo_args = dict_to_object(myalgo_args)
    test(myalgo_args, term_args.label)

    myalgo_args = args.copy()
    method = 'ES-MA1'
    for init_std, step_size, mean_ratio, n_points in product(
        [0.3, 1.0], [0.05, 0.10, 0.50, 1.00], [0.1, 1.0], [2, 5]):
        myalgo_args.update({
            'label': term_args.label,
            'env_name': term_args.env,
            'method': method,
            'init_std': init_std,
            'step_size': y2_max,
            'mean_ratio': mean_ratio,
            'n_points': n_points,
        })
    myalgo_args = dict_to_object(myalgo_args)
    test(myalgo_args, term_args.label)
示例#4
0
def main():
    train_dir = "origin_data/-Doi_song_train.muc"
    dev_dir = "origin_data/Doi_song_dev.muc"
    test_dir = "origin_data/Doi_song_test.muc"

    counter = Counter()

    print("read train file")
    sentences_train = read_file(train_dir, counter)

    print("read dev file")
    sentences_dev = read_file(dev_dir, counter)

    print("read test file")
    sentences_test = read_file(test_dir, counter)

    print(counter)
    print("longest sentence: %s" % str(counter.longest_sen))
    print("longest word: %s" % counter.longest_word())

    word2idx = read_word_embedding()

    char2idx = tags2idx(counter.char_vocab)
    pos2idx = tags2idx(counter.pos_tags)
    chunk2idx = tags2idx(counter.chunk_tags)
    ner2idx = tags2idx(counter.ner_tags)
    utils.json_dump(char2idx, "embedding/char2idx.json")
    utils.json_dump(pos2idx, "embedding/pos2idx.json")
    utils.json_dump(chunk2idx, "embedding/chunk2idx.json")
    utils.json_dump(ner2idx, "embedding/ner2idx.json")

    print("encoding data")
    encoder = {
        "max_sen_len": counter.max_sen_len,
        "max_word_len": counter.max_word_len,
        **utils.make_dict(word2idx, char2idx, pos2idx, chunk2idx, ner2idx)
    }
    encoder = utils.dict_to_object(encoder)
    chars_train, words_train, pos_train, chunk_train, ner_train = encode_sens(
        sentences_train, encoder)
    chars_dev, words_dev, pos_dev, chunk_dev, ner_dev = encode_sens(
        sentences_dev, encoder)
    chars_test, words_test, pos_test, chunk_test, ner_test = encode_sens(
        sentences_test, encoder)

    print("saving data")
    data = utils.make_dict(chars_train, words_train, pos_train, chunk_train,
                           ner_train, chars_dev, words_dev, pos_dev, chunk_dev,
                           ner_dev, chars_test, words_test, pos_test,
                           chunk_test, ner_test)
    os.makedirs("data", exist_ok=True)
    for k, d in data.items():
        np.save("data/%s.npy" % k, d)
示例#5
0
def sync_local():

    local_chain = BlockChain()

    if os.path.exists(cnst.BLOCK_CHAIN_DIR):
        for filepath in glob.glob(os.path.join(cnst.BLOCK_CHAIN_DIR,
                                               '*.json')):
            with open(filepath, 'r') as block_file:
                try:
                    block_info = json.load(block_file)
                except:
                    print(filepath)
                block_object = dict_to_object(block_info=block_info)
                local_chain.chainList.append(block_object)

    return local_chain
示例#6
0
文件: train.py 项目: Lanuet/ner
def load_data():
    files = glob.glob("data/*.npy")
    data = {}
    for f in files:
        name = utils.get_file_name(f)
        data[name] = np.load(f)
    data = utils.dict_to_object(data)

    data.max_sen_len, data.max_word_len = data.words_train.shape[1:]

    pos2idx = utils.json_load("embedding/pos2idx")
    data.pos_alphabet_size = len(pos2idx)
    char2idx = utils.json_load("embedding/char2idx")
    data.char_alphabet_size = len(char2idx)
    ner2idx = utils.json_load("embedding/ner2idx")
    data.num_labels = len(ner2idx)
示例#7
0
import os
import yaml
from utils import dict_to_object

# 项目路径
BASE_PATH = os.path.join(
    os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'application')
# 获取静态配置参数
SETTING_DICT = yaml.safe_load(
    open(os.path.join(os.path.dirname(BASE_PATH), 'config', 'conf.yaml')))

# 添加动态配置参数
SETTING_DYNAMIC = {
    # JWT加密key
    'JWT_KEY': os.urandom(24),
    # 文章md文件位置
    'ARTICLE_FILE': os.path.join(os.path.dirname(BASE_PATH),
                                 'static/article_file')
}

# 更新配置参数
SETTING_DICT.update(SETTING_DYNAMIC)
SETTING = dict_to_object(SETTING_DICT)