def play_one_episode(env, func): env.reset() env.prepare() r = 0 stats = [StatCounter() for _ in range(7)] while r == 0: last_cards_value = env.get_last_outcards() last_cards_char = to_char(last_cards_value) last_out_cards = Card.val2onehot60(last_cards_value) last_category_idx = env.get_last_outcategory_idx() curr_cards_char = to_char(env.get_curr_handcards()) is_active = True if last_cards_value.size == 0 else False s = env.get_state_prob() intention, r, category_idx = env.step_auto() if category_idx == 14: continue minor_cards_targets = pick_minor_targets(category_idx, to_char(intention)) if not is_active: if category_idx == Category.QUADRIC.value and category_idx != last_category_idx: passive_decision_input = 1 passive_bomb_input = intention[0] - 3 passive_decision_prob, passive_bomb_prob, _, _, _, _, _ = func( [ s.reshape(1, -1), last_out_cards.reshape(1, -1), np.zeros([s.shape[0]]) ]) stats[0].feed( int(passive_decision_input == np.argmax( passive_decision_prob))) stats[1].feed( int(passive_bomb_input == np.argmax(passive_bomb_prob))) else: if category_idx == Category.BIGBANG.value: passive_decision_input = 2 passive_decision_prob, _, _, _, _, _, _ = func([ s.reshape(1, -1), last_out_cards.reshape(1, -1), np.zeros([s.shape[0]]) ]) stats[0].feed( int(passive_decision_input == np.argmax( passive_decision_prob))) else: if category_idx != Category.EMPTY.value: passive_decision_input = 3 # OFFSET_ONE # 1st, Feb - remove relative card output since shift is hard for the network to learn passive_response_input = intention[0] - 3 if passive_response_input < 0: print("something bad happens") passive_response_input = 0 passive_decision_prob, _, passive_response_prob, _, _, _, _ = func( [ s.reshape(1, -1), last_out_cards.reshape(1, -1), np.zeros([s.shape[0]]) ]) stats[0].feed( int(passive_decision_input == np.argmax( passive_decision_prob))) stats[2].feed( int(passive_response_input == np.argmax( passive_response_prob))) else: passive_decision_input = 0 passive_decision_prob, _, _, _, _, _, _ = func([ s.reshape(1, -1), last_out_cards.reshape(1, -1), np.zeros([s.shape[0]]) ]) stats[0].feed( int(passive_decision_input == np.argmax( passive_decision_prob))) else: seq_length = get_seq_length(category_idx, intention) # ACTIVE OFFSET ONE! active_decision_input = category_idx - 1 active_response_input = intention[0] - 3 _, _, _, active_decision_prob, active_response_prob, active_seq_prob, _ = func( [ s.reshape(1, -1), last_out_cards.reshape(1, -1), np.zeros([s.shape[0]]) ]) stats[3].feed( int(active_decision_input == np.argmax(active_decision_prob))) stats[4].feed( int(active_response_input == np.argmax(active_response_prob))) if seq_length is not None: # length offset one seq_length_input = seq_length - 1 stats[5].feed( int(seq_length_input == np.argmax(active_seq_prob))) if minor_cards_targets is not None: main_cards = pick_main_cards(category_idx, to_char(intention)) handcards = curr_cards_char.copy() state = s.copy() for main_card in main_cards: handcards.remove(main_card) cards_onehot = Card.char2onehot60(main_cards) # we must make the order in each 4 batch correct... discard_onehot_from_s_60(state, cards_onehot) is_pair = False minor_type = 0 if category_idx == Category.THREE_TWO.value or category_idx == Category.THREE_TWO_LINE.value: is_pair = True minor_type = 1 for target in minor_cards_targets: target_val = Card.char2value_3_17(target) - 3 _, _, _, _, _, _, minor_response_prob = func([ state.copy().reshape(1, -1), last_out_cards.reshape(1, -1), np.array([minor_type]) ]) stats[6].feed( int(target_val == np.argmax(minor_response_prob))) cards = [target] handcards.remove(target) if is_pair: if target not in handcards: logger.warn('something wrong...') logger.warn('minor', target) logger.warn('main_cards', main_cards) logger.warn('handcards', handcards) else: handcards.remove(target) cards.append(target) # correct for one-hot state cards_onehot = Card.char2onehot60(cards) # print(s.shape) # print(cards_onehot.shape) discard_onehot_from_s_60(state, cards_onehot) return stats
def data_generator(rng): env = Env(rng.randint(1 << 31)) # logger.info('called') while True: env.reset() env.prepare() r = 0 while r == 0: last_cards_value = env.get_last_outcards() last_cards_char = to_char(last_cards_value) last_out_cards = Card.val2onehot60(last_cards_value) last_category_idx = env.get_last_outcategory_idx() curr_cards_char = to_char(env.get_curr_handcards()) is_active = True if last_cards_value.size == 0 else False s = env.get_state_prob() # s = s[:60] intention, r, category_idx = env.step_auto() if category_idx == 14: continue minor_cards_targets = pick_minor_targets(category_idx, to_char(intention)) # self, state, last_cards, passive_decision_target, passive_bomb_target, passive_response_target, # active_decision_target, active_response_target, seq_length_target, minor_response_target, minor_type, mode if not is_active: if category_idx == Category.QUADRIC.value and category_idx != last_category_idx: passive_decision_input = 1 passive_bomb_input = intention[0] - 3 yield s, last_out_cards, passive_decision_input, 0, 0, 0, 0, 0, 0, 0, 0 yield s, last_out_cards, 0, passive_bomb_input, 0, 0, 0, 0, 0, 0, 1 else: if category_idx == Category.BIGBANG.value: passive_decision_input = 2 yield s, last_out_cards, passive_decision_input, 0, 0, 0, 0, 0, 0, 0, 0 else: if category_idx != Category.EMPTY.value: passive_decision_input = 3 # OFFSET_ONE # 1st, Feb - remove relative card output since shift is hard for the network to learn passive_response_input = intention[0] - 3 if passive_response_input < 0: print("something bad happens") passive_response_input = 0 yield s, last_out_cards, passive_decision_input, 0, 0, 0, 0, 0, 0, 0, 0 yield s, last_out_cards, 0, 0, passive_response_input, 0, 0, 0, 0, 0, 2 else: passive_decision_input = 0 yield s, last_out_cards, passive_decision_input, 0, 0, 0, 0, 0, 0, 0, 0 else: seq_length = get_seq_length(category_idx, intention) # ACTIVE OFFSET ONE! active_decision_input = category_idx - 1 active_response_input = intention[0] - 3 yield s, last_out_cards, 0, 0, 0, active_decision_input, 0, 0, 0, 0, 3 yield s, last_out_cards, 0, 0, 0, 0, active_response_input, 0, 0, 0, 4 if seq_length is not None: # length offset one seq_length_input = seq_length - 1 yield s, last_out_cards, 0, 0, 0, 0, 0, seq_length_input, 0, 0, 5 if minor_cards_targets is not None: main_cards = pick_main_cards(category_idx, to_char(intention)) handcards = curr_cards_char.copy() state = s.copy() for main_card in main_cards: handcards.remove(main_card) cards_onehot = Card.char2onehot60(main_cards) # we must make the order in each 4 batch correct... discard_onehot_from_s_60(state, cards_onehot) is_pair = False minor_type = 0 if category_idx == Category.THREE_TWO.value or category_idx == Category.THREE_TWO_LINE.value: is_pair = True minor_type = 1 for target in minor_cards_targets: target_val = Card.char2value_3_17(target) - 3 yield state.copy( ), last_out_cards, 0, 0, 0, 0, 0, 0, target_val, minor_type, 6 cards = [target] handcards.remove(target) if is_pair: if target not in handcards: print('something wrong...') print('minor', target) print('main_cards', main_cards) print('handcards', handcards) print('intention', intention) print('category_idx', category_idx) else: handcards.remove(target) cards.append(target) # correct for one-hot state cards_onehot = Card.char2onehot60(cards) # print(s.shape) # print(cards_onehot.shape) discard_onehot_from_s_60(state, cards_onehot)
def step(self, action): if self.act == ACT_TYPE.PASSIVE: if self.mode == MODE.PASSIVE_DECISION: if action == 0 or action == 2: self.finished = True if action == 2: self.intention = np.array([16, 17]) self.card_type = Category.BIGBANG.value else: self.card_type = Category.EMPTY.value return elif action == 1: self.mode = MODE.PASSIVE_BOMB return elif action == 3: self.mode = MODE.PASSIVE_RESPONSE return else: raise Exception('unexpected action') elif self.mode == MODE.PASSIVE_BOMB: # convert to value input self.intention = np.array([action + 3] * 4) self.finished = True self.card_type = Category.QUADRIC.value return elif self.mode == MODE.PASSIVE_RESPONSE: self.intention = give_cards_without_minor( action, self.last_cards_value, self.category, None) if self.category == Category.THREE_ONE.value or \ self.category == Category.THREE_TWO.value or \ self.category == Category.THREE_ONE_LINE.value or \ self.category == Category.THREE_TWO_LINE.value or \ self.category == Category.FOUR_TAKE_TWO.value: if self.category == Category.THREE_TWO.value or self.category == Category.THREE_TWO_LINE.value: self.minor_type = 1 self.mode = MODE.MINOR_RESPONSE # modify the state for minor cards discard_onehot_from_s_60(self.prob_state, Card.val2onehot60(self.intention)) self.minor_length = get_seq_length(self.category, self.last_cards_value) if self.minor_length is None: self.minor_length = 2 if self.category == Category.FOUR_TAKE_TWO.value else 1 self.card_type = self.category return else: self.finished = True self.card_type = self.category return elif self.mode == MODE.MINOR_RESPONSE: minor_value_cards = [action + 3 ] * (1 if self.minor_type == 0 else 2) # modify the state for minor cards discard_onehot_from_s_60(self.prob_state, Card.val2onehot60(minor_value_cards)) self.intention = np.append(self.intention, minor_value_cards) assert self.minor_length > 0 self.minor_length -= 1 if self.minor_length == 0: self.finished = True return else: return elif self.act == ACT_TYPE.ACTIVE: if self.mode == MODE.ACTIVE_DECISION: self.category = action + 1 self.active_decision = action self.mode = MODE.ACTIVE_RESPONSE self.card_type = self.category return elif self.mode == MODE.ACTIVE_RESPONSE: if self.category == Category.SINGLE_LINE.value or \ self.category == Category.DOUBLE_LINE.value or \ self.category == Category.TRIPLE_LINE.value or \ self.category == Category.THREE_ONE_LINE.value or \ self.category == Category.THREE_TWO_LINE.value: self.active_response = action self.mode = MODE.ACTIVE_SEQ return elif self.category == Category.THREE_ONE.value or \ self.category == Category.THREE_TWO.value or \ self.category == Category.FOUR_TAKE_TWO.value: if self.category == Category.THREE_TWO.value or self.category == Category.THREE_TWO_LINE.value: self.minor_type = 1 self.mode = MODE.MINOR_RESPONSE self.intention = give_cards_without_minor( action, np.array([]), self.category, None) # modify the state for minor cards discard_onehot_from_s_60(self.prob_state, Card.val2onehot60(self.intention)) self.minor_length = 2 if self.category == Category.FOUR_TAKE_TWO.value else 1 return else: self.intention = give_cards_without_minor( action, np.array([]), self.category, None) self.finished = True return elif self.mode == MODE.ACTIVE_SEQ: self.minor_length = action + 1 self.intention = give_cards_without_minor( self.active_response, np.array([]), self.category, action + 1) if self.category == Category.THREE_ONE_LINE.value or \ self.category == Category.THREE_TWO_LINE.value: if self.category == Category.THREE_TWO.value or self.category == Category.THREE_TWO_LINE.value: self.minor_type = 1 self.mode = MODE.MINOR_RESPONSE # modify the state for minor cards discard_onehot_from_s_60(self.prob_state, Card.val2onehot60(self.intention)) else: self.finished = True return elif self.mode == MODE.MINOR_RESPONSE: minor_value_cards = [action + 3 ] * (1 if self.minor_type == 0 else 2) # modify the state for minor cards discard_onehot_from_s_60(self.prob_state, Card.val2onehot60(minor_value_cards)) self.intention = np.append(self.intention, minor_value_cards) assert self.minor_length > 0 self.minor_length -= 1 if self.minor_length == 0: self.finished = True return else: return