def simple_sensorHub(params): params['subject'] = "SensorHub Graphic " email_response = "" path_real, database_name = utils.download_database(params['filename'], full_path = False) only_name = database_name[:database_name.rfind(".")] params["all_time"] = utils.get_datetime() #TIME params["a_func"] = utils.get_datetime() #TIME try: email_response += "Exporting data (Sensor Hub) ..." export_csv ="SensorHub_%s" % (only_name+".csv") ExportSensorHub().run(path_real+database_name, path_real+export_csv) except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("CSV conversion",params["a_func"]) email_response += "OK\n" email_response += "\n CSV file = "+utils.create_link(params['KEY_IML'],str(path_real),str(export_csv))+"\n\n\n" email_response += time_txt try: email_response += "Building Graphic (Sensor Hub) ..." path_graphic ="sensor_hub_%s" % (only_name+".pdf") SensorHubGraphic().run(path_real+export_csv,path_real+path_graphic) except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("Graphic creation",params["a_func"]) email_response += "OK\n" email_response += "\n Graphic = "+utils.create_link(params['KEY_IML'],str(path_real),str(path_graphic))+"\n\n\n" email_response += time_txt email_response += utils.end_func("All process",params["all_time"]) return utils.response_email(params['email'],params['subject'], email_response)
def filter_simple_wifi(params): params['subject'] = "Filter WIFI Graphic " email_response = utils.show_info(params) + "\n" path_real, database_name = utils.download_database(params['filename'], full_path = False) only_name = database_name[:database_name.rfind(".")] params["all_time"] = utils.get_datetime() #TIME params["a_func"] = utils.get_datetime() #TIME try: email_response += "Exporting data (WIFI) ..." export_csv ="filter_wifi%s" % (only_name+".csv") wifi_list_mac, wifi_list_name = utils.parse_wifi_list(params['wifi_list']) ExportWifi(wifi_list_mac,wifi_list_name,params['is_blacklist']).run(path_real+database_name,path_real+export_csv) except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("CSV conversion",params["a_func"]) email_response += "OK\n" email_response += "\n CSV file = "+utils.create_link(params['KEY_IML'],str(path_real),str(export_csv))+"\n\n\n" email_response += time_txt try: email_response += "Building Graphic (Bluetooth) ..." path_graphic ="filter_wifi_%s" % (only_name+".pdf") WifiGraphic().run(path_real+export_csv,path_real+path_graphic) except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("Graphic creation",params["a_func"]) email_response += "OK\n" email_response += "\n Graphic = "+utils.create_link(params['KEY_IML'],str(path_real),str(path_graphic))+"\n\n\n" email_response += time_txt email_response += utils.end_func("All process",params["all_time"]) return utils.response_email(params['email'],params['subject'], email_response)
def exec_ML_1(params): params['subject'] = "Machine Learning - Results" email_response = utils.show_info(params) + "\n" try: email_response += "download database ..." path_real, database_name = utils.download_database(params['filename'], full_path = False) except Exception as e: return utils.get_error(e, params) email_response += "OK\n" email_response += "\n Database = "+utils.create_link(params['KEY_IML'],str(path_real),str(database_name))+"\n\n\n" params['path_real'] = path_real params['database_name'] = database_name params["only_database_name"] = database_name[:database_name.rfind(".")] params["all_time"] = utils.get_datetime() #TIME params["a_func"] = utils.get_datetime() #TIME try: email_response += "Converting csv ..." params["csvfile"] = params["only_database_name"]+".csv" export_csv.run( inputfile=path_real+database_name, outputfile=path_real+params["csvfile"], bluetooth=params['bluetooth'], wifi=params['wifi'], sensorhub=params['optimzation_sensor_hub'], battery=True if params['optimzation_sensor_hub'] else False , optimize=params['optimzation_sensor_hub'], ) except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("CSV conversion",params["a_func"]) email_response += "OK\n" email_response += "\n CSV file = "+utils.create_link(params['KEY_IML'],str(path_real),str(params["csvfile"]))+"\n\n" email_response += time_txt params["a_func"] = utils.get_datetime() #TIME try: email_response += "PreProcessing ..." df = pd.read_csv(open(path_real+params["csvfile"],"r"), sep=',', header=0, index_col=0) pre_processing = pre.PreProcessing(df,norm=params['optimzation_sensor_hub']) df = pre_processing.build() df.to_csv(path_real+"pre_processing"+params["csvfile"], sep=',', encoding='utf-8', header=True) except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("PreProcessing",params["a_func"]) email_response += "OK\n" email_response += "\n CSV PreProcessing = "+utils.create_link(params['KEY_IML'],str(path_real),path_real+"pre_processing"+params["csvfile"])+"\n\n" email_response += time_txt params['csvpreprocessing'] = path_real+"pre_processing"+params["csvfile"] params["a_func"] = utils.get_datetime() #TIME try: email_response += "Clustering ..." labels, n_clusters = Clustering(df, mode="fixed_k", n_clusters=int(params['number'])).clusterize() timestamp = list(df.index) params['csvcluster'] = str(params['number'])+"clusters"+params["only_database_name"]+".csv" with open(path_real+params['csvcluster'], 'w') as f: f.write("timestamp,clusters\n") for i in range(len(labels)): f.write("{},{}\n".format(timestamp[i],labels[i])) except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("Clustering",params["a_func"]) email_response += "OK\n" email_response += "\n CSV MachineLearning = "+utils.create_link(params['KEY_IML'],str(path_real),str(params['csvcluster']))+"\n\n" email_response += time_txt params["a_func"] = utils.get_datetime() #TIME try: email_response += "Creating graphic..." params['pdfgraphic'] = (params["only_database_name"]+".pdf").replace("(","").replace(")","") print "Rscript machine_learning/pdf/pdf_lines.R \""+path_real+params['csvcluster']+"\" \""+path_real+params['pdfgraphic']+"\"" os.system("Rscript machine_learning/pdf/pdf_lines.R \""+path_real+params['csvcluster']+"\" \""+path_real+params['pdfgraphic']+"\"") except Exception as e: return utils.get_error(e, params) time_txt = utils.end_func("Graphic creation",params["a_func"]) email_response += "OK\n" email_response += "\n Graphic = "+utils.create_link(params['KEY_IML'],str(path_real),str(params['pdfgraphic']))+"\n\n" email_response += time_txt print email_response email_response += utils.end_func("All process",params["all_time"]) return utils.response_email(params['email'],"Machine Learning - Results", email_response)
def download_database(params): params['subject'] = "Database - " path_real, database_name = utils.download_database(params['filename'], full_path = False) utils.response_email(params['email'] , params['subject'], utils.create_link(params['KEY_IML'],path_real,database_name))