示例#1
0
        #   continue

        new_value[key] = par_gaps[key] * step + fid[key]

    for key in values.keys():
        par_gaps[key] = np.abs(new_value[key][0] - new_value[key][1])

    new_value = collections.OrderedDict(
        sorted(new_value.items(), key=lambda t: t[0]))
    values = new_value
    print values, par_gaps

    # # ===============

    print par_gaps
    par_gaps, values, fid = utils.exclude_parameters(exclude, par_gaps, values,
                                                     fid)
    print 'loading files'
    # to do this is the bottleneck. it can be speeded up.
    dats = utils.load_data(data_folder, values, lensed)

    #  the index of lmax etc can be different for lmax. For example cause CAMB start from l=2.
    n_values = np.size(values.keys())
    lmax_index = np.where(dats[:, 0, 0] == lmax)[0][0]
    ltmax_index = np.where(dats[:, 0, 0] == l_t_max)[0][0]
    lmin_index = np.where(dats[:, 0, 0] == lmin)[0][0]

    # cut Cl^T at ells bigger than l_t_max. WE can not clean point sources there.

    dats[ltmax_index:, 1, 1:] = 0.

    # phi_T has oscillations in it.
# ===============

# use different order formula same gap
order = 5
# # step = np.array([-4,-3,-2,-1,1,2,3,4])
# step = np.array([-8,-6,-4,-2,2,4,6,8])

# for key in values.keys():
#   new_value[key] = par_gaps[key] * step + fid[key]
# for key in values.keys():
#   par_gaps[key]= np.abs(new_value[key][0]-new_value[key][1])
# new_value = collections.OrderedDict(sorted(new_value.items(), key=lambda t: t[0]))
# values = new_value
# # ===============

par_gaps, values, fid = utils.exclude_parameters(exclude, par_gaps, values, fid)

print 'loading files'
dats = utils.load_data(data_folder, values, lensed)
n_values = np.size(values.keys())
lmax_index = np.where(dats[:, 0, 0] == lmax)[0][0]
ltmax_index = np.where(dats[:, 0, 0] == l_t_max)[0][0]
lmin_index = np.where(dats[:, 0, 0] == lmin)[0][0]

# cut Cl^T at ells bigger than l_t_max
dats[ltmax_index:, 1, 1:] = 0.
# phi_T has oscillations in it.
# dats[900:, 6, 0:] = 0.

# creating the n_values by n_values matrix
fisher = np.zeros((n_values, n_values))