def validate(val_loader, model, criterion, epoch, key, evaluator): ''' Run evaluation ''' # Switch to evaluate mode model.eval() for i, (img, gt) in enumerate(val_loader): # Process the network inputs and outputs img = utils.normalize(img, torch.Tensor([0.295, 0.204, 0.197]), torch.Tensor([0.221, 0.188, 0.182])) gt_temp = gt * 255 label = utils.generateLabel4CE(gt_temp, key) oneHotGT = utils.generateOneHot(gt_temp, key) img, label = Variable(img), Variable(label) if use_gpu: img = img.cuda() label = label.cuda() # Compute output seg = model(img) loss = model.dice_loss(seg, label) print('[%d/%d][%d/%d] Loss: %.4f' % (epoch, args.epochs-1, i, len(val_loader)-1, loss.mean().data)) utils.displaySamples(img, seg, gt, use_gpu, key, args.saveTest, epoch, i, args.save_dir) evaluator.addBatch(seg, oneHotGT)
def train(train_loader, model, criterion, optimizer, scheduler, epoch, key): ''' Run one training epoch ''' # Switch to train mode model.train() for i, (img, seg_gt, class_gt) in enumerate(train_loader): # For TenCrop Data Augmentation img = img.view(-1, 3, args.resizedImageSize, args.resizedImageSize) img = utils.normalize(img, torch.Tensor([0.295, 0.204, 0.197]), torch.Tensor([0.221, 0.188, 0.182])) seg_gt = seg_gt.view(-1, 3, args.resizedImageSize, args.resizedImageSize) # Process the network inputs and outputs gt_temp = seg_gt * 255 seg_label = utils.generateLabel4CE(gt_temp, key) class_label = class_gt for _ in range(9): class_label = torch.cat((class_label, class_gt), 0) img, seg_label, class_label = Variable(img), Variable( seg_label), Variable(class_label).float() if use_gpu: img = img.cuda() seg_label = seg_label.cuda() class_label = class_label.cuda() # Compute output classified, segmented = model(img) seg_loss = model.dice_loss(segmented, seg_label) class_loss = criterion(classified, class_label) total_loss = seg_loss + class_loss # Compute gradient and do SGD step optimizer.zero_grad() total_loss.backward() optimizer.step() scheduler.step(total_loss.mean().data) print( '[{:d}/{:d}][{:d}/{:d}] Total Loss: {:.4f}, Segmentation Loss: {:.4f}, Classification Loss: {:.4f}' .format(epoch, args.epochs - 1, i, len(train_loader) - 1, total_loss.mean().data, seg_loss.mean().data, class_loss.mean().data)) utils.displaySamples(img, segmented, seg_gt, use_gpu, key, False, epoch, i, args.save_dir)
def train(train_loader, model, criterion, optimizer, scheduler, epoch, key): ''' Run one training epoch ''' # Switch to train mode model.train() epoch_loss = 0 for i, (img, gt) in enumerate(train_loader): # For TenCrop Data Augmentation img = img.view(-1,3,args.resizedImageSize,args.resizedImageSize) img = utils.normalize(img, torch.Tensor([0.295, 0.204, 0.197]), torch.Tensor([0.221, 0.188, 0.182])) gt = gt.view(-1,3,args.resizedImageSize,args.resizedImageSize) # Process the network inputs and outputs gt_temp = gt * 255 label = utils.generateLabel4CE(gt_temp, key) oneHotGT = utils.generateOneHot(gt_temp, key) img, label = Variable(img), Variable(label) if use_gpu: img = img.cuda() label = label.cuda() # Compute output seg = model(img) loss = model.dice_loss(seg, label) # Compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step(loss.mean().item()) epoch_loss += loss.mean().item() print('[%d/%d][%d/%d] Loss: %.4f' % (epoch, args.epochs-1, i, len(train_loader)-1, loss.mean().item())) utils.displaySamples(img, seg, gt, use_gpu, key, False, epoch, i, args.save_dir) writer.add_scalar('Train Epoch Loss', epoch_loss / (i+1), epoch)
def validate(val_loader, model, criterion, epoch, key, evaluator): ''' Run evaluation ''' # Switch to evaluate mode model.eval() for i, (img, seg_gt, class_gt) in enumerate(val_loader): # Process the network inputs and outputs img = utils.normalize(img, torch.Tensor([0.295, 0.204, 0.197]), torch.Tensor([0.221, 0.188, 0.182])) gt_temp = seg_gt * 255 seg_label = utils.generateLabel4CE(gt_temp, key) oneHotGT = utils.generateOneHot(gt_temp, key) img, seg_label, class_label = Variable(img), Variable( seg_label), Variable(class_gt).float() if use_gpu: img = img.cuda() seg_label = seg_label.cuda() class_label = class_label.cuda() # Compute output classified, segmented = model(img) seg_loss = model.dice_loss(segmented, seg_label) class_loss = criterion(classified, class_label) total_loss = seg_loss + class_loss print( '[{:d}/{:d}][{:d}/{:d}] Total Loss: {:.4f}, Segmentation Loss: {:.4f}, Classification Loss: {:.4f}' .format(epoch, args.epochs - 1, i, len(val_loader) - 1, total_loss.mean().data, seg_loss.mean().data, class_loss.mean().data)) utils.displaySamples(img, segmented, seg_gt, use_gpu, key, args.saveTest, epoch, i, args.save_dir) evaluator.addBatch(segmented, oneHotGT)