cnn.keep_prob: 1. }) #print loss ou = sess.run(pred, feed_dict={ cnn.x: batch_x, cnn.y: batch_y, cnn.keep_prob: 1 }) #print ou.shape #print batch_y.shape [ hammin_loss, one_error, coverage, ranking_loss, average_precision, subset_accuracy, accuracy, precision, recall, f_beta ] = utils.get_accuracy_test(ou, batch_y) #print(acc) plot_x.append(step * config.batch_size) plot_y.append(loss) print("Iter " + str(step * config.batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss[0])) print("hammin_loss: ", "{:.6f}".format(hammin_loss)) print("subset_accuracy: ", "{:.6f}".format(subset_accuracy)) print("accuracy: ", "{:.6f}".format(accuracy)) print("precision: ", "{:.6f}".format(precision)) print("recall: ", "{:.6f}".format(recall)) print("f_beta: ", "{:.6f}".format(f_beta)) if data.end == data.total_texts: epoch += 1 print("Epoch: " + str(epoch)) data.shuffler()
#batch_y = data.labels_train # bibtex, rcv1 batch_y = np.array(data.labels_train) # agnews batch_y = batch_y.reshape(config.batch_size, config.label_size) #print(len(batch_x), len(batch_x[0])) #print("Y shape: ", batch_y.shape) sess.run(optimizer, feed_dict={mlp.x: batch_x, mlp.y: batch_y, mlp.keep_prob: mlp.dropout}) if step % 1 == 0: #print Get Accuracy: " loss = sess.run([cost], feed_dict={mlp.x: batch_x, mlp.y: batch_y, mlp.keep_prob: 1.}) #print loss ou = sess.run(pred, feed_dict={mlp.x: batch_x, mlp.y: batch_y, mlp.keep_prob: 1}) #data.ids[data.start:data.end] [hammin_loss, one_error, coverage, ranking_loss, average_precision, subset_accuracy, accuracy, precision, recall, f_beta] = utils.get_accuracy_test(ou, batch_y) #print(data.ids[data.start:data.end]) print ("Iter " + str(step * config.batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss[0])) print ("hammin_loss: ", "{:.6f}".format(hammin_loss)) print ("subset_accuracy: ", "{:.6f}".format(subset_accuracy)) print ("accuracy: ", "{:.6f}".format(accuracy)) print ("precision: ", "{:.6f}".format(precision)) print ("recall: ", "{:.6f}".format(recall)) print ("f_beta: ", "{:.6f}".format(f_beta)) if data.end == data.total_texts: epoch += 1 print("Epoch: " + str(epoch)) data.shuffler() if step % 5000 == 0: save_path = saver.save(sess, "mlp_weights/model" + str(model_saving) + "_bow.ckpt")