示例#1
0
def main():
    ontology = dag.DAG(config.go_fpath)

    #gene_annotation = utils.get_annotation(config.annotation_fpath, config.filtered_annotation_fpath, ontology.get_root())
    gene_annotation = utils.get_annotation(config.annotation_fpath, config.filtered_annotation_fpath, ontology.get_root())
    print "Number of annotated genes:%d" % len(gene_annotation)

    network = utils.create_network(config.network_fpath)
    print "Number of nodes in network:%d" % network.number_of_nodes()

    '''
示例#2
0
        non_sim_avg = 0.0
        for node in network.nodes():
            if not node in neighbors:
                count += 1
                nterms = gene_annotation[node]
                sim = compute_gene_sim_total(nterms, terms)
                #sim = compute_gene_sim_max(nterms, terms)
                non_sim_avg += sim
        non_sim_avg /= count
        print "%s, %f, %f" % (gene, sim_avg, non_sim_avg)


if __name__ == "__main__":
    dag = DAG(config.go_fpath)

    gene_annotation = utils.get_annotation(config.annotation_fpath, config.filtered_annotation_fpath, dag.get_root().id)

    term_ic = utils.calculate_ic(gene_annotation, dag, config.ic_fpath)

    network = utils.create_network(config.network_fpath)
    # Remove unannotated gene from network
    for node in network.nodes():
        if not node in gene_annotation:
            network.remove_node(node)
    # Remove individual nodes by get the largest indepedent connected component
    network = nx.connected_component_subgraphs(network)[0]

    sim_cache = utils.read_sim(config.simcache_fpath)

    #compute_term_in_neighbour_ratio()
    #compute_avg_term_num()
示例#3
0
    else:
        csv = pd.read_csv('data/{}_labels.csv'.format(args.phase))
        x = np.array([
            cv2.cvtColor(
                cv2.imread('data/{}/{:.0f}_{:.0f}.tif'.format(
                    args.phase, j['slide'], j['rid'])), cv2.COLOR_BGR2RGB)
            for _, j in csv.iterrows()
        ])
        np.save('data/{}/y.npy'.format(args.phase),
                np.array(csv['y'].tolist()))
    np.save('data/{}/x.npy'.format(args.phase), x)

elif args.opt == 'get_annotation':
    filelist = glob.glob('data/cells/Sedeen/*.session.xml')
    filelist.sort()
    annotations = get_annotation(filelist)
    if not os.path.exists('segmentation&classification/cells'):
        os.mkdir('segmentation&classification/cells')
    np.save('segmentation&classification/cells/annotation.npy', annotations)

elif args.opt == 'get_centroid':
    seg = np.load('segmentation&classification/{}/seg.npy'.format(args.phase))

    def _add_data(region_prop):
        tmp = []
        for j in region_prop:
            if j.major_axis_length / j.minor_axis_length < 3 and j.area < 1200:
                tmp.append(j.centroid + (j.label, ))
        tmp = np.array(tmp)
        return tmp