save_to_ckpt(ckptfile, start_epoch + additional_epoch, net, optimizer, scheduler) # save the final model torch.save(net.state_dict(), ckptfile) ndcg_result = eval_ndcg_at_k(net, device, df_valid, valid_loader, 100000, [10, 30], start_epoch + additional_epoch, writer) print( get_time(), "finish training " + ", ".join( ["NDCG@{}: {:.5f}".format(k, ndcg_result[k]) for k in ndcg_result]), '\n\n') if __name__ == "__main__": parser = get_args_parser() parser.add_argument("--sigma", dest="sigma", type=float, default=1.0) args = parser.parse_args() train( args.start_epoch, args.additional_epoch, args.lr, args.optim, args.leaky_relu, ndcg_gain_in_train=args.ndcg_gain_in_train, sigma=args.sigma, double_precision=args.double_precision, standardize=args.standardize, small_dataset=args.small_dataset, debug=args.debug, output_dir=args.output_dir,
from datetime import datetime from flask import request from flask_restful import Resource from config import db from models.user import User from schemas.user import UserSchema from utils import get_args_parser user_schema = UserSchema(many=False) parser = get_args_parser([ {'name': "num_mark_tasks", 'type': int, 'required': True, 'help': 'number of mark tasks the user has'}, {'name': "password", 'type': str, 'required': False, 'help': 'unprocessed password of the user'}, {'name': "name", 'type': str, 'required': True, 'help': 'name of the user'} ]) class UserResource(Resource): """Resource to handle CRUD operations for users table""" @staticmethod def get(user_id: int): """ Returns single user """ if not user_id:
import numpy as np import os import sys import torch from torch.utils.data import DataLoader from augmentation.augmentation import RootAugmentation, RootBaseTransform from dataloader.Eco2018Loader import DeviceLoader, Eco2018 from loss.loss import loss_fn, loss_fn2 from model.Textnet import Textnet from model.functions import fit from utils import get_device, get_args_parser, make_output_dir_name, print_config_file if __name__ == '__main__': args = get_args_parser().parse_args() # Create output directory if it doesn't exist output_dir = make_output_dir_name(args) try: os.makedirs(output_dir, exist_ok=True) except IOError as e: sys.exit(f'[ERROR] Could not create output directory: {e}') # Write configuration to log file try: print_config_file(output_dir, args) except IOError as e: sys.exit(f'[ERROR] Could not write to output directory: {e}') print('Running on device:', get_device())
import os import sys import torch import torch.nn as nn import my_model import model import utils import data import time start = time.time() # prepare eval_batch_size = 10 args = utils.get_args_parser() print('\n') print('V ' * 80) print('\n') print(args) print('\n') print('#' * 80) print("start!====") # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) device = utils.check_device(args) if args.use_MyGRU: print("train by MyGRU!") ############################################################################### # Load data