def build_codebook_from_name(experiment_name, experiment_group='', return_dataset=False, return_decoder=False): import os import configparser workspace_path = os.environ.get('AE_WORKSPACE_PATH') if workspace_path == None: print 'Please define a workspace path:\n' print 'export AE_WORKSPACE_PATH=/path/to/workspace\n' exit(-1) import utils as u import tensorflow as tf log_dir = u.get_log_dir(workspace_path, experiment_name, experiment_group) checkpoint_file = u.get_checkpoint_basefilename(log_dir) cfg_file_path = u.get_train_config_exp_file_path(log_dir, experiment_name) dataset_path = u.get_dataset_path(workspace_path) if os.path.exists(cfg_file_path): args = configparser.ConfigParser() args.read(cfg_file_path) else: print 'ERROR: Config File not found: ', cfg_file_path exit() with tf.variable_scope(experiment_name): dataset = build_dataset(dataset_path, args) x = tf.placeholder(tf.float32, [ None, ] + list(dataset.shape)) encoder = build_encoder(x, args) codebook = build_codebook(encoder, dataset, args) if return_decoder: reconst_target = tf.placeholder(tf.float32, [ None, ] + list(dataset.shape)) decoder = build_decoder(reconst_target, encoder, args) if return_dataset: if return_decoder: return codebook, dataset, decoder else: return codebook, dataset else: return codebook
def main(): workspace_path = os.environ.get('AE_WORKSPACE_PATH') if workspace_path == None: print 'Please define a workspace path:\n' print 'export AE_WORKSPACE_PATH=/path/to/workspace\n' exit(-1) gentle_stop = np.array((1, ), dtype=np.bool) gentle_stop[0] = False def on_ctrl_c(signal, frame): gentle_stop[0] = True signal.signal(signal.SIGINT, on_ctrl_c) parser = argparse.ArgumentParser() parser.add_argument("experiment_name") parser.add_argument("-d", action='store_true', default=False) parser.add_argument("-gen", action='store_true', default=False) arguments = parser.parse_args() full_name = arguments.experiment_name.split('/') experiment_name = full_name.pop() experiment_group = full_name.pop() if len(full_name) > 0 else '' debug_mode = arguments.d generate_data = arguments.gen cfg_file_path = u.get_config_file_path(workspace_path, experiment_name, experiment_group) log_dir = u.get_log_dir(workspace_path, experiment_name, experiment_group) checkpoint_file = u.get_checkpoint_basefilename(log_dir) ckpt_dir = u.get_checkpoint_dir(log_dir) train_fig_dir = u.get_train_fig_dir(log_dir) dataset_path = u.get_dataset_path(workspace_path) if not os.path.exists(cfg_file_path): print 'Could not find config file:\n' print '{}\n'.format(cfg_file_path) exit(-1) if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) if not os.path.exists(train_fig_dir): os.makedirs(train_fig_dir) if not os.path.exists(dataset_path): os.makedirs(dataset_path) args = configparser.ConfigParser() args.read(cfg_file_path) shutil.copy2(cfg_file_path, log_dir) with tf.variable_scope(experiment_name): dataset = factory.build_dataset(dataset_path, args) queue = factory.build_queue(dataset, args) encoder = factory.build_encoder(queue.x, args, is_training=True) decoder = factory.build_decoder(queue.y, encoder, args, is_training=True) ae = factory.build_ae(encoder, decoder, args) codebook = factory.build_codebook(encoder, dataset, args) train_op = factory.build_train_op(ae, args) saver = tf.train.Saver(save_relative_paths=True) num_iter = args.getint( 'Training', 'NUM_ITER') if not debug_mode else np.iinfo(np.int32).max save_interval = args.getint('Training', 'SAVE_INTERVAL') model_type = args.get('Dataset', 'MODEL') if model_type == 'dsprites': dataset.get_sprite_training_images(args) else: dataset.get_training_images(dataset_path, args) dataset.load_bg_images(dataset_path) if generate_data: print 'finished generating synthetic training data for ' + experiment_name print 'exiting...' exit() bar = progressbar.ProgressBar(maxval=num_iter, widgets=[ ' [', progressbar.Timer(), ' | ', progressbar.Counter('%0{}d / {}'.format( len(str(num_iter)), num_iter)), ' ] ', progressbar.Bar(), ' (', progressbar.ETA(), ') ' ]) gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.9) config = tf.ConfigProto(gpu_options=gpu_options) with tf.Session(config=config) as sess: chkpt = tf.train.get_checkpoint_state(ckpt_dir) if chkpt and chkpt.model_checkpoint_path: saver.restore(sess, chkpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) merged_loss_summary = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(ckpt_dir, sess.graph) if not debug_mode: print 'Training with %s model' % args.get( 'Dataset', 'MODEL'), os.path.basename( args.get('Paths', 'MODEL_PATH')) bar.start() queue.start(sess) for i in xrange(ae.global_step.eval(), num_iter): if not debug_mode: sess.run(train_op) if i % 10 == 0: loss = sess.run(merged_loss_summary) summary_writer.add_summary(loss, i) bar.update(i) if (i + 1) % save_interval == 0: saver.save(sess, checkpoint_file, global_step=ae.global_step) this_x, this_y = sess.run([queue.x, queue.y]) reconstr_train = sess.run(decoder.x, feed_dict={queue.x: this_x}) train_imgs = np.hstack( (u.tiles(this_x, 4, 4), u.tiles(reconstr_train, 4, 4), u.tiles(this_y, 4, 4))) cv2.imwrite( os.path.join(train_fig_dir, 'training_images_%s.png' % i), train_imgs * 255) else: this_x, this_y = sess.run([queue.x, queue.y]) reconstr_train = sess.run(decoder.x, feed_dict={queue.x: this_x}) cv2.imshow( 'sample batch', np.hstack((u.tiles(this_x, 3, 3), u.tiles(reconstr_train, 3, 3), u.tiles(this_y, 3, 3)))) k = cv2.waitKey(0) if k == 27: break if gentle_stop[0]: break queue.stop(sess) if not debug_mode: bar.finish() if not gentle_stop[0] and not debug_mode: print 'To create the embedding run:\n' print 'ae_embed {}\n'.format(full_name)
arguments = parser.parse_args() full_name = arguments.experiment_name.split('/') obj_id = arguments.obj_id experiment_name = full_name.pop() experiment_group = full_name.pop() if len(full_name) > 0 else '' cfg_file_path = u.get_config_file_path(path_workspace, experiment_name, experiment_group) list_models = [int(obj_id)] log_dir = u.get_log_dir(path_workspace, experiment_name, experiment_group) ckpt_dir = os.path.join(log_dir, 'checkpoints_lambda{:d}'.format(int(lambda_reconst))) checkpoint_file = u.get_checkpoint_basefilename(ckpt_dir) train_fig_dir = os.path.join( log_dir, 'train_figures_lambda{:d}'.format(int(lambda_reconst))) dataset_path = u.get_dataset_path(path_workspace) print('dataset_path', dataset_path) if not os.path.exists(cfg_file_path): print('Could not find config file:\n') print('{}\n'.format(cfg_file_path)) exit(-1) if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) if not os.path.exists(train_fig_dir): os.makedirs(train_fig_dir) if not os.path.exists(dataset_path):
def main(): workspace_path = os.environ.get('AE_WORKSPACE_PATH') if workspace_path == None: print 'Please define a workspace path:\n' print 'export AE_WORKSPACE_PATH=/path/to/workspace\n' exit(-1) parser = argparse.ArgumentParser() parser.add_argument("experiment_name") parser.add_argument('--at_step', default=None, required=False) arguments = parser.parse_args() full_name = arguments.experiment_name.split('/') experiment_name = full_name.pop() experiment_group = full_name.pop() if len(full_name) > 0 else '' at_step = arguments.at_step cfg_file_path = u.get_config_file_path(workspace_path, experiment_name, experiment_group) log_dir = u.get_log_dir(workspace_path, experiment_name, experiment_group) checkpoint_file = u.get_checkpoint_basefilename(log_dir) ckpt_dir = u.get_checkpoint_dir(log_dir) dataset_path = u.get_dataset_path(workspace_path) print checkpoint_file print ckpt_dir print '#' * 20 if not os.path.exists(cfg_file_path): print 'Could not find config file:\n' print '{}\n'.format(cfg_file_path) exit(-1) args = configparser.ConfigParser() args.read(cfg_file_path) with tf.variable_scope(experiment_name): dataset = factory.build_dataset(dataset_path, args) queue = factory.build_queue(dataset, args) encoder = factory.build_encoder(queue.x, args) decoder = factory.build_decoder(queue.y, encoder, args) ae = factory.build_ae(encoder, decoder, args) codebook = factory.build_codebook(encoder, dataset, args) saver = tf.train.Saver(save_relative_paths=True) batch_size = args.getint('Training', 'BATCH_SIZE') model = args.get('Dataset', 'MODEL') gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) config = tf.ConfigProto(gpu_options=gpu_options) with tf.Session(config=config) as sess: print ckpt_dir print '#' * 20 factory.restore_checkpoint(sess, saver, ckpt_dir, at_step=at_step) # chkpt = tf.train.get_checkpoint_state(ckpt_dir) # if chkpt and chkpt.model_checkpoint_path: # print chkpt.model_checkpoint_path # saver.restore(sess, chkpt.model_checkpoint_path) # else: # print 'No checkpoint found. Expected one in:\n' # print '{}\n'.format(ckpt_dir) # exit(-1) if model == 'dsprites': codebook.update_embedding_dsprites(sess, args) else: codebook.update_embedding(sess, batch_size) print 'Saving new checkoint ..', saver.save(sess, checkpoint_file, global_step=ae.global_step) print 'done',