def featurize(generate): # File paths from project level # fp_train_A = 'tweet_irony_detection/train/SemEval2018-T3-train-taskA.txt' fp_train_A = 'train/SemEval2018-T3-train-taskA.txt' fp_train_B = 'train/SemEval2018-T3-train-taskB.txt' fp_test_A = 'test_TaskA/SemEval2018-T3_input_test_taskA.txt' fp_test_B = 'test_TaskB/SemEval2018-T3_input_test_taskB.txt' fp_labels_A = 'goldtest_TaskA/SemEval2018-T3_gold_test_taskA_emoji.txt' fp_labels_B = 'goldtest_TaskB/SemEval2018-T3_gold_test_taskB_emoji.txt' # Training data for task A and B , test data & correct labels for both tasks pre_process_url = True # Set to remove URLs pre_process_usr = True train_A = read_non_emoji_tweets(fp_train_A, "train", pre_process_url, pre_process_usr) train_B = read_non_emoji_tweets(fp_train_B, "train", pre_process_url, pre_process_usr) tr_labels_A = [t.tweet_label for t in train_A] tr_label_B = [t.tweet_label for t in train_B] test_A = read_non_emoji_tweets(fp_test_A, "test", pre_process_url, pre_process_usr) test_B = read_non_emoji_tweets(fp_test_B, "test", pre_process_url, pre_process_usr) gold_A = get_label(fp_labels_A) tst_labels_A = [v for k, v in gold_A.items()] gold_B = get_label(fp_labels_B) tst_labels_B = [v for k, v in gold_B.items()] # Print class stats print_class_stats(train_A, train_B, gold_A, gold_B) # Read features from files # if not generate: # feats_tr_A = read_features("feats_tr_A.csv") # feats_tst_A= read_features("feats_tst_A.csv") # feats_tr_B= read_features("feats_tr_B.csv") # feats_tst_B=read_features("feats_tst_B.csv") # return feats_tr_A, feats_tst_A, feats_tr_B, feats_tst_B, tr_labels_A, tr_label_B, tst_labels_A, tst_labels_B # Generate features feats_tr_A = get_features(train_A, generate, 'train_A') feats_tst_A = get_features(test_A, generate, 'test_A') feats_tr_B = get_features(train_B, generate, 'train_B') # Same as A's features feats_tst_B = get_features(test_B, generate, 'test_B') # Same as A's features # save_features(feats_tr_A,"feats_tr_A.csv") # save_features(feats_tst_A,"feats_tst_A.csv") # save_features(feats_tr_B,"feats_tr_B.csv") # save_features(feats_tst_B,"feats_tst_B.csv") return feats_tr_A, feats_tst_A, feats_tr_B, feats_tst_B, tr_labels_A, tr_label_B, tst_labels_A, tst_labels_B
def get_batch(self): input = torch.Tensor() output = torch.Tensor() for i in range(0, batch_size): if self.word_in_sentence == len(tokenized[self.sentence]): self.sentence += 1 self.word_in_sentence = 0 index = vocabulary[tokenized[self.sentence][self.word_in_sentence]] adding = index_to_one_hot(index) input = torch.cat([input, adding], 0) get_label(tokenized[self.sentence], self.word_in_sentence)
def __init__(self, args, graph_out, train_dataset=None, dev_dataset=None, test_dataset=None): self.args = args self.train_dataset = train_dataset self.dev_dataset = dev_dataset self.test_dataset = test_dataset self.graph_out = graph_out # self.early_stopping = EarlyStopping(patience=10, verbose=True) self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.hidden_states_list = None self.config_class, _, _ = MODEL_CLASSES[args.model_type] self.config = self.config_class.from_pretrained( args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task, output_hidden_states=True, output_attentions=True) self.model = NumericHGN(self.args, config=self.config) # GPU or CPU self.device = "cuda" if torch.cuda.is_available( ) and not args.no_cuda else "cpu" self.model.to(self.device) print( "*****************Config & Pretrained Model load complete**********************" )
def on_root_parse(self, root): """On root parse event handler. """ def _get_change(i): return collections.OrderedDict( version=i[0], date=i[1], author=i[2], note=i[3] ) obj = collections.OrderedDict() obj['id'] = root.id obj['label'] = get_label(root.name) obj['description'] = root.description obj['contact'] = root.contact obj['authors'] = [i.strip() for i in root.authors.split(',')] obj['contributors'] = [i.strip() for i in root.contributors.split(',')] obj['project'] = 'cmip6' obj['changeHistory'] = [_get_change(i) for i in root.change_history] obj['shortTables'] = [] obj['subTopics'] = [] self._maps[root] = obj
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None): self.args = args self.train_dataset = train_dataset self.dev_dataset = dev_dataset self.test_dataset = test_dataset self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.config_class = AutoConfig self.model_class = BertForSequenceClassification self.config = self.config_class.from_pretrained( args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task, id2label={str(i): label for i, label in enumerate(self.label_lst)}, label2id={label: i for i, label in enumerate(self.label_lst)}) self.model = self.model_class.from_pretrained(args.model_name_or_path, config=self.config) # GPU or CPU self.device = "cuda" if torch.cuda.is_available( ) and not args.no_cuda else "cpu" self.model.to(self.device)
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None): self.args = args self.train_dataset = ConcatDataset([train_dataset, test_dataset]) self.dev_dataset = dev_dataset self.test_dataset = test_dataset print("Train Dataset:", len(self.train_dataset)) self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type] self.config = self.config_class.from_pretrained( args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task, id2label={str(i): label for i, label in enumerate(self.label_lst)}, label2id={label: i for i, label in enumerate(self.label_lst)}) self.model = self.model_class.from_pretrained(args.model_name_or_path, config=self.config) # GPU or CPU self.device = "cuda" if torch.cuda.is_available( ) and not args.no_cuda else "cpu" self.model.to(self.device)
def get_slices(slice_len=512): """Slice audiofiles into slices of size 'slice_len' In addition to slicing, each slice is normalized between -1 and 1. :param slice_len: number of samples of one slice :return: returns a tuple containg: -a 2-D array with the shape (slice_len, num_slices) where num_slices is defined by slice_len and the number of files specified in the global variables section -a 2-D array with the shape (num_labels, num_slices) containg one-hot-encoded labels """ features = None labels = None num_files = len(filenames) progress = 0 printProgressBar(progress, num_files, prefix='Progress', suffix='Complete', length=50) for f in filenames: # read file _, data = wav.read(f) data = data[:, 0] num_slices = len(data) // slice_len assert num_slices > 0, 'slice_len is to big' num_samples = num_slices * slice_len new_features = np.array( np.split(data[:num_samples], num_slices), dtype=np.float16) if features is None: features = new_features else: features = np.vstack((features, new_features)) label = get_label(f) num_labels = np.shape(new_features)[0] new_labels = np.repeat(label, num_labels) if labels is None: labels = new_labels else: labels = np.append(labels, new_labels) progress += 1 printProgressBar(progress, num_files, prefix='Progress', suffix='Complete', length=50) for feature in features: feature_max = np.max(np.abs(feature)) if feature_max != 0: feature /= feature_max return features, labels
def create_dataframe_domain(): """Creates a dataframe with the specified features The specified features are extracted from the specified files and scaled using the StandardScaler. :return: pandas dataframe with the corresponding label as the last column """ features = None labels = None num_files = len(filenames) progress = 0 printProgressBar(progress, num_files, prefix='Progress', suffix='Complete', length=50) for f in filenames: new_features = extract_features_file(f) if features is None: features = new_features else: features = np.vstack((features, new_features)) label = get_label(f) num_labels = np.shape(new_features)[0] new_labels = np.repeat(label, num_labels) if labels is None: labels = new_labels else: labels = np.append(labels, new_labels) progress += 1 printProgressBar(progress, num_files, prefix='Progress', suffix='Complete', length=50) # scale data features_scaled = StandardScaler().fit_transform(features) df_features = pd.DataFrame(features_scaled) df_features.columns = feature_names # df['Label'] = labels NOTE: Old version simple string versions instead of one hot labels_enc = label_encoder.transform(labels) labels_one_hot = to_categorical(labels_enc) df_labels = pd.DataFrame(labels_one_hot) df_labels.columns = instruments assert len(df_features.index) == len(df_labels.index) df = pd.concat([df_features, df_labels], axis=1, join='inner') print(df.head()) return df
def __init__( self, args, ): self.args = args self.biased_model = None self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.config = BertConfig.from_pretrained( args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task, id2label={str(i): label for i, label in enumerate(self.label_lst)}, label2id={label: i for i, label in enumerate(self.label_lst)}, ) self.model = RBERT.from_pretrained( args.model_name_or_path, config=self.config, args=args ) # GPU or CPU self.device = ( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) self.model.to(self.device)
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None): self.args = args self.train_dataset = train_dataset self.dev_dataset = dev_dataset self.test_dataset = test_dataset self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.config = BertConfig.from_pretrained( args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task, id2label={str(i): label for i, label in enumerate(self.label_lst)}, label2id={label: i for i, label in enumerate(self.label_lst)}, ) self.model = RBERT.from_pretrained(args.model_name_or_path, config=self.config, args=args) # GPU or CPU self.device = "cuda" if torch.cuda.is_available( ) and not args.no_cuda else "cpu" self.model.to(self.device) for name, parameters in self.model.named_parameters(): print(name, ':', parameters.size())
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None): self.args = args self.train_dataset = train_dataset self.dev_dataset = dev_dataset self.test_dataset = test_dataset self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type] self.bert_config = self.config_class.from_pretrained( args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task) self.model = self.model_class(self.bert_config, args) # GPU or CPU self.device = "cuda" if torch.cuda.is_available( ) and not args.no_cuda else "cpu" self.model.to(self.device)
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None): ''' initial trainer :param args,train_dataset,dev_dataset, test_dataset ''' self.args = args self.train_dataset = train_dataset self.dev_dataset = dev_dataset self.test_dataset = test_dataset self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type] self.bert_config = self.config_class.from_pretrained( args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task) self.model = self.model_class(self.bert_config, args) self.graph = load_graph(args.graph_file) self.edge_feature = load_edge_feature(args.edge_feature_file) self.entity_feature = load_entity_feature(args.entity_feature_file) # self.entity2id = load_entity2id(args.entity2id_file) # GPU or CPU self.device = "cuda" if torch.cuda.is_available( ) and not args.no_cuda else "cpu" self.model.to(self.device)
def search(): t = request.args.get('type', 'all') s = request.args.get('term', '').lower() c = request.args.get('custom', '') == 'true'; #l = request.args.get('label', '%(uri)s') if (s == ''): return "{}" ontologies=[''] ontologies.extend(os.listdir(ONTOLOGY_DIR)) results = [] if t == 'all' or t == 'subjects': for subj in maingraph.subjects(): subj = str(subj) try: subjlabel = str(get_label(subj)) except: subjlabel = subj try: subjqname = str(get_qname(subj)) except: subjqname = subj if s in subj.lower() or s in subjlabel.lower() or s in subjqname.lower(): item = {'uri':subj, 'qname': subjqname, 'label': subjlabel} if item not in results: results.append(item) if t == 'predicates': for pred,_,_ in maingraph.triples((None, RDF.type, RDF.Property)): pred = str(pred) try: predlabel = str(get_label(pred)) except: predlabel = pred try: predqname = str(get_qname(pred)) except: predqname = pred if s in pred.lower() or s in predlabel.lower() or s in predqname.lower(): item = {'uri':pred, 'qname': predqname, 'label': predlabel} if item not in results: results.append(item) if c: results.append({'uri':s}) return json.dumps(results)
def get_data(input): print("###############get data#################") prosessed_data = np.load(input) validation_imgs = prosessed_data[2] validation_labels = prosessed_data[3] print("###############finish get data!#################") num_f = 0 labels, num_f = utils.get_label(validation_labels, train.THRESHOLD, num_f) return validation_imgs, labels, num_f
def _draw_match(fname, hists): for pair in hists: myc = None for obj in pair: if fnmatchcase(obj.GetName(), options.dump): xaxis, yaxis = obj.GetXaxis(), obj.GetYaxis() xaxis.SetTitle(get_label(xaxis.GetTitle())) yaxis.SetTitle(get_label(yaxis.GetTitle())) yaxis.SetTitleOffset(1.25) if not myc: myc = ROOT.TCanvas('myc', '', 800, 500) myc.cd() obj.Draw() else: obj.Draw('same') if myc: myc.Print(fname) del myc
def prepare_nquads_for_template(nquads): changes = {} for q in nquads: ctx = changes.get(q['context'], {'prefix': get_prefix_from_uri(q['context'])}) sub = ctx.get(q['subject'], {'qname': get_qname(q['subject']), 'label': get_label(q['subject'])}) pred = sub.get(q['predicate'], {'qname': get_qname(q['predicate']), 'label': get_label(q['predicate']), 'values': []}) vals = pred.get('values') v = rdfstring2dict(q['object']) v['class'] = q['type'] v['id'] = q['id'] vals.append(v) sub[q['predicate']] = pred ctx[q['subject']] = sub changes[q['context']] = ctx return changes
def on_enum_parse(self, enum): """On enum parse event handler. """ obj = collections.OrderedDict() obj['label'] = get_label(enum.name) obj['description'] = enum.description obj['isOpen'] = enum.is_open obj['choices'] = [] self._maps[enum] = obj
def kernel_svm(**args): global result print(args) dataGetter = massageData.massageData(folder=FLAGS.data_folder,samples = 2000) #train = 0.5, test=0.2 X_train, Y_train = dataGetter.getTrain() X_dev, Y_dev = dataGetter.getDev() scaling = MinMaxScaler(feature_range=(-1,1)).fit(X_train) X_train = scaling.transform(X_train) X_dev = scaling.transform(X_dev) print("Starting " + args['kernel'] + " SVM training ...") start_time_secs = time.time() clf = svm.SVC(**args) clf.fit(X_train, Y_train) end_time_secs = time.time() print("Trained") training_duration_secs = end_time_secs - start_time_secs disp=[0,0] class_names = utils.get_label(Y_dev) file_name = "cm_svm_50_" + args['kernel'] f = open('imgs/cm_imgs/'+file_name+'.txt','w') titles_options = [(file_name+"\nNormalized confusion matrix", 'true'), (file_name+"\nConfusion matrix, without normalization", None)] for i,[title, normalize] in enumerate(titles_options): disp[i] = plot_confusion_matrix(clf, X_dev, Y_dev, display_labels=class_names, cmap=plt.cm.Blues, xticks_rotation='vertical', include_values=False, normalize=normalize) disp[i].ax_.set_title(title) print(title,file=f) print(disp[i].confusion_matrix,file=f) #Y_dev_prediction = clf.predict(X_dev) accuracy = np.average(np.diagonal(disp[0].confusion_matrix)) #accuracy = clf.score(X_dev, Y_dev) experiment_result_string = "-------------------\n" #experiment_result_string += "\nPrediction: {}".format(Y_dev_prediction) #experiment_result_string += "\nActual Label: {}".format(Y_dev) experiment_result_string += "\nAcurracy: {}".format(accuracy) experiment_result_string += "\nTraining time(secs): {}".format(training_duration_secs) print(experiment_result_string,file=f) result += experiment_result_string+'\n' confusion = disp[1].confusion_matrix #print ("Confusion matrix: ", confusion) pickle.dump(class_names, open("class_names_svm_l", 'wb')) pickle.dump(confusion, open("confusion_matrix_nclass_svm_l", 'wb'))
def read(self, uri, progress = None, recursive = None): pos = 0; files = []; dirs = []; """ La primera vez que se llama """ try: path = gnomevfs.get_local_path_from_uri(uri) except: path = uri if not recursive: self.progress_bar = progress self.clear_progress_bar() self._cancel_import_disk = False self.count_files = 1; self.position = 0; self.root = path """ Creamos un nuevo disco """ self.disk = fstypes.Disk(utils.get_label(path), path, None, None, 0, utils.get_drive_icon(str(path))) """ Contamos los archivos primero, para luego poder poner el progreso """ self.count_files = self.dir_count(uri) # self.count_files = sum((len(f) for _, _, f in os.walk(path))) # don't count correctly gobject.timeout_add(500, self.update_progress_bar) for info in gnomevfs.DirectoryHandle(uri): if(self._cancel_import_disk): return None """ Insertamos el archivo, si no es un archivo oculto """ if info.name == '.' or info.name == '..' or info.name[0] == ".": continue self.position += 1 pathfile = uri + "/" + urllib.pathname2url(info.name) self.path = pathfile file = fstypes.File(pathfile, self.disk) if info.type and info.type == 2: file.add_files(self.read(pathfile, None, True)) # Directory files.append(file) if not recursive: self.disk.add(file) if(self._cancel_import_disk): return None if not recursive: self.progress_bar = None return self.disk else: return files
def read(self, uri, progress=None, recursive=None): pos = 0 files = [] dirs = [] """ La primera vez que se llama """ try: path = gnomevfs.get_local_path_from_uri(uri) except: path = uri if not recursive: self.progress_bar = progress self.clear_progress_bar() self._cancel_import_disk = False self.count_files = 1 self.position = 0 self.root = path """ Creamos un nuevo disco """ self.disk = fstypes.Disk(utils.get_label(path), path, None, None, 0, utils.get_drive_icon(str(path))) """ Contamos los archivos primero, para luego poder poner el progreso """ self.count_files = self.dir_count(uri) # self.count_files = sum((len(f) for _, _, f in os.walk(path))) # don't count correctly gobject.timeout_add(500, self.update_progress_bar) for info in gnomevfs.DirectoryHandle(uri): if (self._cancel_import_disk): return None """ Insertamos el archivo, si no es un archivo oculto """ if info.name == '.' or info.name == '..' or info.name[0] == ".": continue self.position += 1 pathfile = uri + "/" + urllib.pathname2url(info.name) self.path = pathfile file = fstypes.File(pathfile, self.disk) if info.type and info.type == 2: file.add_files(self.read(pathfile, None, True)) # Directory files.append(file) if not recursive: self.disk.add(file) if (self._cancel_import_disk): return None if not recursive: self.progress_bar = None return self.disk else: return files
def on_property_set_parse(self, prop_set): """On property set parse event handler. """ obj = collections.OrderedDict() obj['label'] = get_label(prop_set.name) obj['description'] = prop_set.description obj['id'] = prop_set.id obj['properties'] = [] obj['propertySets'] = [] self._maps[prop_set] = obj
def on_topic_parse(self, topic): """On topic parse event handler. """ obj = collections.OrderedDict() obj['id'] = topic.id obj['label'] = get_label(topic.name) obj['description'] = topic.description obj['contact'] = topic.contact obj['properties'] = [] self._maps[topic] = obj
def on_property_parse(self, prop): """On property parse event handler. """ obj = collections.OrderedDict() obj['label'] = get_label(prop.name) obj['description'] = prop.description obj['id'] = prop.id obj['cardinality'] = prop.cardinality obj['type'] = "enum" if prop.enum else prop.typeof obj['is_cim_property'] = prop.was_injected self._maps[prop] = obj
def convert_index_to_data(self, list_of_files): """ Convert paths to data in form (feature paths, labels) """ random.shuffle(list_of_files) paths = [self.data_dir + file for file in list_of_files] labels = [utils.get_label(file) for file in list_of_files] tokens = utils.convert_labels_to_tokens( labels) # Possible to set num_class if self.num_class == 2: return paths, np.array(tokens) y_categorical = tf.keras.utils.to_categorical(tokens, self.num_class) return paths, y_categorical
def _map_topic(self, topic): """Maps a specialization topic to a dictionary. """ obj = collections.OrderedDict() obj['label'] = get_label(topic.name) obj['description'] = topic.description obj['id'] = topic.id obj['contact'] = topic.contact obj['properties'] = [] obj['propertySets'] = [] self._maps[topic] = obj return obj
def scribe(self, line, program_ast): """The internal method called for basic printing of identifer, type, and value """ variable_id, variable_type = utils.get_id_and_type(line, program_ast) label = utils.get_label(line, program_ast) output = (variable_id + " is the ' + " + variable_type + " + ' ' + str(" + variable_id + ")") if len(self.filtered_labels) > 0: if not label or label not in self.filtered_labels: return "" if label: output += (" + ' (" + label + ")'") return output
def run(): print("folder = ", FLAGS.data_folder) dataGetter = massageData.massageData(folder=FLAGS.data_folder) X_train, Y_train = dataGetter.getTrain() #TODO: feature extractions X_dev, Y_dev = dataGetter.getDev() start_time_secs = time.time() print("Starting Logistic Regression training ...") clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial', verbose=10, n_jobs=-1, max_iter=FLAGS.max_iter).fit(X_train, Y_train) print("Training done.") end_time_secs = time.time() training_duration_secs = end_time_secs - start_time_secs Y_dev_prediction = clf.predict(X_dev) accuracy = clf.score(X_dev, Y_dev) experiment_result_string = "-------------------\n" experiment_result_string += "\nPrediction: {}".format(Y_dev_prediction) experiment_result_string += "\nActual Label: {}".format(Y_dev) experiment_result_string += "\nAcurracy: {}".format(accuracy) experiment_result_string += "\nTraining time(secs): {}".format( training_duration_secs) experiment_result_string += "\nMax training iterations: {}".format( FLAGS.max_iter) experiment_result_string += "\nTraining time / Max training iterations: {}".format( 1.0 * training_duration_secs / FLAGS.max_iter) class_names = utils.get_label(Y_dev) classification_report_string = classification_report( Y_dev, Y_dev_prediction, target_names=class_names) experiment_result_string += "\nClassification report: {}".format( classification_report_string) print(experiment_result_string) # Save report to file utils.write_contents_to_file(get_experiment_report_filename(), experiment_result_string) confusion = confusion_matrix(Y_dev, Y_dev_prediction, labels=class_names) print("Confusion matrix: ", confusion) pickle.dump(class_names, open(get_class_filename(), 'wb')) pickle.dump(confusion, open(get_confusion_matrix_filename(), 'wb'))
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None): self.args = args self.train_dataset = train_dataset self.dev_dataset = dev_dataset self.test_dataset = test_dataset self.label_lst = get_label(args) self.num_labels = len(self.label_lst) self.bert_config = BertConfig.from_pretrained(args.pretrained_model_name, num_labels=self.num_labels, finetuning_task=args.task) self.model = RBERT(self.bert_config, args) # GPU or CPU self.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" self.model.to(self.device)
def poly_c_v_f1(results, sp=True): # poly: C vs f1 if sp: plt.subplot(rows,cols,get_gn()) k_poly = [x for x in results if str(x["param"]["ID"]).startswith("PvC") and x["param"]["degree"] == 3] k_poly = sorted(k_poly, key = lambda i: i["param"]['C']) log_C = [np.log10(x["param"]["C"]) for x in k_poly] for ci, c in enumerate(get_classes()): f1s = [x["test"]["f1_pc"][ci] for x in k_poly] plot(log_C, f1s, ci, label="{}".format(get_label(ci))) plt.title('Polynomial Kernel: F1 Score Against C Value') plt.ylabel('F1') plt.xlabel('log(C)') plt.legend(loc="lower right")
def on_property_parse(self, prop): """On property parse event handler. """ obj = collections.OrderedDict() obj['id'] = prop.id obj['label'] = " > ".join([get_label(i) for i in prop.id.split('.')[3:]]) obj['description'] = prop.description obj['cardinality'] = prop.cardinality obj['type'] = "enum" if prop.enum else prop.typeof obj['is_cim_property'] = prop.was_injected if prop.enum: obj['enum'] = self._get_enum(prop.enum) properties = self._maps[prop.root_topic]['properties'] properties.append(obj)
def get_data(input): print("###############get data#################") prosessed_data = np.load(input) training_imgs = prosessed_data[0] training_labels = prosessed_data[1] validation_imgs = prosessed_data[2] validation_labels = prosessed_data[3] testing_imgs = prosessed_data[4] testing_labels = prosessed_data[5] print("%d train, %d validation, %d test" % (len(training_imgs), len(validation_imgs), len(testing_imgs))) print("###############finish get data!#################") num_f = 0 labels, num_f = utils.get_label(training_labels, THRESHOLD, num_f) return training_imgs, labels, num_f
def _get_enum(self, enum): """Returns enumeration encoded as a dictionary. """ obj = collections.OrderedDict() obj['id'] = enum.description obj['label'] = get_label(enum.name) obj['description'] = enum.description obj['is_open'] = enum.is_open obj['choices'] = [] for choice in enum: obj['choices'].append({ 'description': choice.description, 'value': choice.value }) return obj
def on_property_parse(self, prop): """On property parse event handler. """ obj = collections.OrderedDict() obj['id'] = prop.id obj['label'] = " > ".join( [get_label(i) for i in prop.id.split('.')[3:]]) obj['description'] = prop.description obj['cardinality'] = prop.cardinality obj['type'] = "enum" if prop.enum else prop.typeof obj['is_cim_property'] = prop.was_injected if prop.enum: obj['enum'] = self._get_enum(prop.enum) properties = self._maps[prop.root_topic]['properties'] properties.append(obj)
def predict(pred_config): # load model and args args = get_args(pred_config) device = get_device(pred_config) model = load_model(pred_config, args, device) logger.info(args) # Convert input file to TensorDataset dataset = convert_input_file_to_tensor_dataset(pred_config, args) # Predict sampler = SequentialSampler(dataset) data_loader = DataLoader(dataset, sampler=sampler, batch_size=pred_config.batch_size) preds = None for batch in tqdm(data_loader, desc="Predicting"): batch = tuple(t.to(device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], "labels": None, "e1_mask": batch[3], "e2_mask": batch[4] } outputs = model(**inputs) logits = outputs[0] if preds is None: preds = logits.detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) preds = np.argmax(preds, axis=1) # Write to output file label_lst = get_label(args) with open(pred_config.output_file, "w", encoding="utf-8") as f: for pred in preds: f.write("{}\n".format(label_lst[pred])) logger.info("Prediction Done!")
def set_id(self, owner, identifier=None): """Appends an identifier to managed collection. """ try: identifier = identifier or owner.id except AttributeError: pass finally: if not identifier: print "Invalid identifier: ", type(owner), owner.name, identifier return # Derive label. label = " > ".join([get_label(i) for i in identifier.split(".")[1:]]) # Append to managed collection. self._ids.append((identifier, label, owner.type_key, identifier))
def predict(): project_id = 'stable-hybrid-249623' model_id = 'ICN4772510494057073039' message = request.get_json(force=True) encoded = message['image'] decoded = base64.b64decode(encoded) prediction = get_prediction(decoded, project_id, model_id) pred_label = prediction.payload[0].display_name lbl = get_label(pred_label) score = prediction.payload[0].classification.score response = { 'prediction' : { 'label' : lbl, 'score' : score } } return jsonify(response)
def ontology(ontology_): ont = query_db('select * from ontologies where prefix = ?', [ontology_], one=True) # get the graph for the relevant ontology graph = get_graph(ontology_) if graph is None: # TODO: 404 return redirect(url_for('index')) resource_ = request.args.get('resource_', None) errors = [] # for recreating a page if there are errors changes = {'addition':[], 'removal':[]} # if ?resource_=xxx is present and xxx is not None then go into "resource viewing mode" if resource_ is not None: properties = {} # get the label of the resource res_name = get_label(resource_) # force the resource to a URIRef uri2res = lambda uri: uri if isinstance(uri, rdflib.URIRef) else rdflib.URIRef(uri) r = uri2res(resource_) # build list of (type,predicate,object)s, using an empty string for the type of original triples tpos = [('', p, o) for p, o in graph.predicate_objects(subject=r)] # include additions/removals from uncommited proposal if session.get('logged_in', False): tpos.extend([(s['type'], uri2res(s['predicate']), parse_string_rdfobject(s['object'])) for s in get_uncommited_quads(g.userid, resource_)]) # TODO: these 2 lines may be redundant now as most form validation is done in the UI, remove them completely when this is confirmed # include additions from changes (only present if errors in form submission) tpos.extend([('addition', uri2res(stmt['pred']), parse_string_rdfobject(stmt['val'])) for stmt in changes['addition']]) # include removals from changes (only present if errors in form submission) tpos.extend([('removal', uri2res(stmt['pred']), parse_string_rdfobject(stmt['val'])) for stmt in changes['removal']]) # TODO: add "modified" type (maybe) for t,p,o in tpos: # get existing values for this predicate item = properties.get(p, {'value': [], 'qname': get_qname(p), 'label': get_label(p)}) # convert rdf object to a dict v = rdfobject2dict(o) # add 'deleted' or 'added' 'class' value (used by templates) if t == 'removal': try: # if it's a removal, it should already exist in the values list # find it and add the class to the existing entry idx = item['value'].index(v) v['class'] = 'deleted' item['value'][idx] = v except ValueError: pass # caused when .index fails else: if t == 'addition': v['class'] = 'added' item['value'].append(v) # update the changes properties[p] = item # TODO: this may be redundant with the get_label call above # simply sets the resource name variable to the value of the RDFS.label predicate if res_name is '' and p == RDFS.label: res_name = v['value'] # if there were no predicates, consider this a "new resource" and present the "create resource" view # with the URI already filled in # TODO: a lot of this is duplicate code from the create_resource function is_new = False if len(properties) == 0: # create new resource properties = {} properties[RDF.type] = {'value': [{'type':"URI", 'value':"", 'class':'added'}], 'qname': 'rdf:type', 'label': 'type'} properties[RDFS.label] = {'value': [{'type':"Literal", 'value':"", 'class':'added'}], 'qname': 'rdfs:label', 'label': 'label'} res_name='Create New Resource' is_new=True # TODO: proposal/history stuff proposals = [] history = [] return render_template('resource.html', ontology_=ont, uri=resource_, name=res_name, properties_=properties, proposals=proposals, history=history, is_new=is_new, auto_save=False) # if no resource is requested, go to the ontology view, retrieving a list of all the subjects in the ontology resources = [{'uri':s[0], 'qname':get_qname(s[0]), 'label':get_label(s[0])} for s in graph.triples((None, RDF.type, None))] proposals = None #[s for s,_ in groupby(pgraph.subjects()) if isinstance(s, rdflib.URIRef)] # TODO and not s.startswith(changeset_base_uri) return render_template('ontology.html', ontology_=ont, resources=resources, proposals=proposals)
basedir, lxpath = probe_wsl(True) if basedir: names = glob.glob(os.path.join(basedir, 'rootfs*')) not_trusty = True has_trusty = False if len(names) > 0: print('\nThe following distributions are currently installed:\n') for name in names: active = os.path.basename(name) == 'rootfs' name = get_label(name).split('_', 1) if len(name) != 2: continue if name[0] == 'ubuntu' and name[1] == 'trusty': has_trusty = True if active: not_trusty = False print(' - %s%s%s:%s%s%s%s' % (Fore.YELLOW, name[0], Fore.RESET, Fore.YELLOW, name[1], Fore.RESET, ('%s*%s' % (Fore.GREEN, Fore.RESET) if active else ''))) if not_trusty: print()
def read(self, uri, progress = None, recursive = None): pos = 0; files = []; dirs = []; finfo = fileinfo.Info() """ La primera vez que se llama """ try: path = gnomevfs.get_local_path_from_uri(uri) except: path = uri if not recursive: self.progress_bar = progress self.clear_progress_bar() self._cancel_import_disk = False self.count_files = 1; self.position = 0; self.root = path """ Creamos un nuevo disco """ utils.get_drive_icon(str(path)).save('/tmp/gnomecatalog_icon_disk.png', 'png') data = open('/tmp/gnomecatalog_icon_disk.png', 'rb').read() self.disk = Disks({'name' : utils.get_label(path), 'volname' : utils.get_label(path), 'root' : path, 'icon' : buffer(data) }) self.disk.save() """ Contamos los archivos primero, para luego poder poner el progreso """ self.count_files = self.dir_count(uri) self.path = path self.timeout_handler_id = gobject.timeout_add(150, self.update_progress_bar) for info in gnomevfs.DirectoryHandle(uri): if(self._cancel_import_disk): return None """ Insertamos el archivo, si no es un archivo oculto """ if info.name == '.' or info.name == '..' or info.name[0] == ".": continue self.position += 1 pathfile = uri + "/" + urllib.pathname2url(info.name) self.path = pathfile #file = fstypes.File(pathfile, self.disk) path , name, size, type, mime, meta, date = finfo.get(pathfile) file = Files({'name' : name, 'size' : str(size), 'type' : type, 'mime' : str(mime), 'date' : str(date), 'idparent' : '0' }) file.save() while gtk.events_pending(): gtk.main_iteration() if not recursive: self.disk.add(file) if info.type and info.type == 2: file.add(self.read(pathfile, None, True)) # Directory files.append(file) if(self._cancel_import_disk): return None if not recursive: self.progress_bar = None self.disk.commit() return self.disk else: return files
for i, idx in enumerate(zip(*triu)): hist = [ sig_hists[transform+'_corr'][i*2], bkg_hists[transform+'_corr'][i*2] ] if idx[0] == idx[1]: # set bin label using diagonal for i in xrange(len(hist)): name = hist[i].GetName() if i == 0: name = name[5:name.find('_Signal')] else: name = name[5:name.find('_Background')] varnames = name.split('_vs_', 1) corrn[i].GetXaxis().SetBinLabel(idx[0]+1, get_label(varnames[1])) corrn[i].GetYaxis().SetBinLabel(idx[1]+1, get_label(varnames[0])) for i in xrange(len(corrn)): corrn[i].SetBinContent(idx[0]+1, idx[1]+1, 100*hist[i].GetCorrelationFactor()) matrices[transform] = corrn # colour palette # red = np.array([0.0, 0.0, 1.0]) # green = np.array([0.0, 1.0, 0.0]) # blue = np.array([1.0, 0.0, 0.0]) # stops = np.array([0.00, 0.5, 1.0]) # ROOT.TColor.CreateGradientColorTable(len(stops), stops, red, green, blue, 50) # correlation after various transforms