def __init__(self, batch_size, is_training=True, is_fine_tune=False): """ Init for Pipeline """ self.batch_size = batch_size self.part_batch = (self.batch_size / 2) self.is_training = is_training ### Create a new network model self.net_scope = "netmodel_prime" self.net_model = NetModel(self.net_scope, batch_size=self.batch_size, is_training=is_training, is_fine_tune=is_fine_tune) ### Get suitable params self.net_params = utils.get_network_params(self.net_scope) self.resnet_params = utils.get_net_train_params("resnet_v2_50") ### Define all trainable params self.trainable_params = self.net_params + self.resnet_params self.var_list = tf.global_variables() ### Weight save & restore self.bestwt_saver = tf.train.Saver(self.var_list, max_to_keep=5) self.iterwt_saver = tf.train.Saver(self.var_list, max_to_keep=5) ### Scope/Name self.scope = "composer" self.name = "model_composer" ### Get critical network nodes self.nodes_net = self.net_model.get_network_nodes() ## Nodes self.in_gt_nodes = self.nodes_net['inputs_and_gt'] self.cnn_nodes = self.nodes_net['cnn_layer'] self.smpl_nodes = self.nodes_net['smpl_layer'] self.cam_mesh_nodes = self.nodes_net['cam_mesh_module'] self.ren_nodes = self.nodes_net['renderer_layer']
help="File to save weights") parser.add_argument('--inference', type=str, default=None, help="File to load weights") parser.add_argument('--resume', type=str, default=None, help="Weights file to resume training") args = parser.parse_args() # Initialize seed before any use np.random.seed(args.rng_seed) # Get network parameters nw_params = get_network_params(args.dataset, args.size, args.batch_size) metric_names = nw_params['metric_names'] en_top5 = True num_resnet_mods = nw_params['num_resnet_mods'] args.iter_interval = nw_params['iter_interval'] learning_schedule = nw_params['learning_schedule'] en_bottleneck = nw_params['en_bottleneck'] ax.Y.length = nw_params['num_classes'] # Set batch size ax.N.length = args.batch_size # Create training and validation set objects train_set, valid_set = make_aeon_loaders(args.data_dir, args.batch_size, args.num_iterations,