示例#1
0
    def do_simulate(self, morn_state_a, morn_state_b, next_state_a,
                    next_state_b):
        #先考虑a, 变化全部来自于还的减去借的
        p_a = 0
        r_a = 0
        diff_a = next_state_a - morn_state_a  #diff = return - rent

        a_max_rent = morn_state_a  #最多借早上有的车辆数
        for rent_a in range(a_max_rent + 1):
            return_a = diff_a + rent_a
            if return_a < 0:
                continue
            rent_a_prob = get_prob(self.ps_a_rent, rent_a)
            return_a_prob = get_prob(self.ps_a_return, return_a)

            tmp_prob = rent_a_prob * return_a_prob
            p_a += tmp_prob
            r_a += tmp_prob * rent_a * self.rent_return

        p_b = 0
        r_b = 0
        diff_b = next_state_b - morn_state_b  #diff = return - rent
        b_max_rent = morn_state_b
        for rent_b in range(b_max_rent + 1):
            return_b = diff_b + rent_b
            if return_b < 0:
                continue
            rent_b_prob = get_prob(self.ps_b_rent, rent_b)
            return_b_prob = get_prob(self.ps_b_return, return_b)

            tmp_prob = rent_b_prob * return_b_prob
            p_b += tmp_prob
            r_b += tmp_prob * rent_b * self.rent_return

        return p_a * p_b, r_a + r_b
示例#2
0
def plot_prob():
    N = 10_000
    T = 1_000
    tau = 0.01
    ws = [0.96, 0.98, 1., 1.01, 1.03]
    v0 = np.array([1, 0])
    t = np.linspace(0, T, N)

    fig, ax = plt.subplots(figsize=(10, 4))

    for i, w, in enumerate(ws):
        p = get_prob(v0, N, T, tau, w)

        ax.plot(
            t, p,
            color=cm.viridis(i/len(ws)),
            label="$\\omega = {}$".format(w)
            )

    ax.plot(
        t, sin(t*tau/2)**2, "-.k", 
        label="$\sin^2(t \\tau /2)$"
        )
    ax.set_xlabel("$t/[2mL^2/\\hbar]$")
    ax.set_ylabel("$|a_1|^2$")

    ax.legend()
    plt.tight_layout()
    plt.savefig(FIG_PATH + "rabi_osc.pdf")
示例#3
0
def compute_q(MDP, V, s, a):
    '''根据给定的MDP,价值函数V,计算状态行为对s,a的价值qsa
    '''
    S, A, R, P, gamma = MDP
    q_sa = 0

    print('对当前的行为' + str(a) + '计算它的行为价值计算,对行为,计算其对应所有状态的价值')
    for s_prime in S:
        print('状态' + str(s) + '经过a行为,' + str(a) + '获取转移概率' +
              str(get_prob(P, s, a, s_prime)) + '以及分数' +
              str(get_value(V, s_prime)))
        q_sa += get_prob(P, s, a, s_prime) * get_value(V, s_prime)
        print('状态' + str(s) + '经过a行为,' + str(a) + str(q_sa))
    q_sa = get_reward(R, s, a) + gamma * q_sa

    print('算出这个行为价值为' + str(q_sa))
    return q_sa
示例#4
0
def compute_q(MDP, V, s, a):
    S, A, R, P, gamma = MDP
    #s采取动作a之后可能的状态
    q_sa = 0.0
    for s_prime in S:
        q_sa += get_prob(P, s, a, s_prime) * get_value(V, s_prime)
    q_sa = get_reward(R, s, a) + gamma * q_sa
    return q_sa
示例#5
0
def compute_q(MDP, V, s, a):
    '''
    According to the given MDP, the value function V, calculate the value qsa of the state behavior to s, a
    formula   $$q_{\pi}(s,a) = R^a_b + \gamma \sum_{s' \in S}P^a_{ss'} \nu \pi(s')  $$    #markdown
    '''
    S, A, R, P, gamma = MDP
    q_sa = 0
    for s_prime in S:
        q_sa += get_prob(P, s, a, s_prime) * get_value(V, s_prime)
        q_sa = get_reward(R, s, a) + gamma * q_sa
    return q_sa
def compute_q(MDP, V, s, a):
    '''根据给定的MDP, 价值函数V, 计算(状态行为对)s, a的价值qsa
            公式 2.16
    '''
    S, A, R, P, gamma = MDP
    q_sa = 0
    for s_prime in S:
        q_sa += get_prob(P, s, a, s_prime) * get_value(V, s_prime)

    q_sa = get_reward(R, s, a) + gamma * q_sa
    return q_sa
示例#7
0
    def __init__(self, corpus):

        self.grammar = {}
        self.lexicon = {}

        self.get_pcfg(corpus)

        self.freq_tokens = {}
        for tag in self.lexicon.keys():
            for word in self.lexicon[tag].keys():
                if word in self.freq_tokens.keys():
                    self.freq_tokens[word] += self.lexicon[tag][word]
                else:
                    self.freq_tokens[word] = self.lexicon[tag][word]
        sum = np.sum(list(self.freq_tokens.values()))
        for word in self.freq_tokens:
            self.freq_tokens[word] /= sum

        self.set_artificial_tags = set()
        self.chomskyfy()

        self.freq_terminal_tags = {tag: np.sum(list(counts.values())) for (tag, counts) in self.lexicon.items()}
        sum = np.sum(list(self.freq_terminal_tags.values()))
        for tag in self.freq_terminal_tags:
            self.freq_terminal_tags[tag] /= sum

        self.grammar = get_prob(self.grammar)
        self.lexicon = get_prob(self.lexicon)

        list_all_tags = get_tag_list(self.grammar)
        self.list_artificial_symbols = list(self.set_artificial_tags)
        self.list_tags = list(set(list_all_tags).difference(self.set_artificial_tags))

        self.list_all_tags = self.list_tags + self.list_artificial_symbols
        self.nb_tags = len(self.list_tags)
        self.nb_all_tags = len(self.list_all_tags)
示例#8
0
    model = model.to(device)
    model.eval()

    test_fn = 'images/test_img_1.jpg'
    img = cv.imread(test_fn)
    img = cv.resize(img, (im_size, im_size))
    img = get_image(img)
    imgs = torch.zeros([1, 3, im_size, im_size], dtype=torch.float)
    imgs[0] = img
    with torch.no_grad():
        output = model(imgs)
        feature = output[0].cpu().numpy()
        x = feature / np.linalg.norm(feature)

    cosine = np.dot(features, x)
    cosine = np.clip(cosine, -1, 1)
    print('cosine.shape: ' + str(cosine.shape))
    max_index = int(np.argmax(cosine))
    max_value = cosine[max_index]
    print('max_index: ' + str(max_index))
    print('max_value: ' + str(max_value))
    print('name: ' + name_list[max_index])
    print('fps: ' + str(fps_list[max_index]))
    print('idx: ' + str(idx_list[max_index]))
    theta = math.acos(max_value)
    theta = theta * 180 / math.pi

    print('theta: ' + str(theta))
    prob = get_prob(theta)
    print('prob: ' + str(prob))