示例#1
0
    def get_input(self, fact):
        key = (fact[0], fact[1])
        features = [0, 0, 0, 0, 0, 0, 0]

        if (key in self.table.keys()):
            val_list = [x[0] for x in self.table[key].values()]
            if (len(val_list) != 0):
                max_score = self.stat_table[key]['max_score']
                my_score = self.compute_score(fact)[0]
                simi = self.base_model.get_entity_similarity(
                    fact[2], self.stat_table[key]['simi_index'])
                rank = utils.get_rank(val_list, my_score)
                conditional_rank = rank * 1.0 / len(val_list)
                mean = self.stat_table[key]['mean']
                std = self.stat_table[key]['std']
                features = [
                    my_score, max_score, simi, rank, conditional_rank, mean,
                    std
                ]

        return features
示例#2
0
async def user_info(ctx, handle):
    url = f' {CF_USER_INFO}{handle}'
    obj = requests.get(url)
    data = json.loads(obj.text)

    if data['status'] == "FAILED":
        await ctx.send(f'{data["comment"]}')
        return

    pic = "https:" + data['result'][0]['titlePhoto']
    rating = data['result'][0]['rating']
    colour, rank = utils.get_rank(rating)
    embed = discord.Embed(
        title=f'{handle}',
        description=
        f'{data["result"][0]["organization"]} {data["result"][0]["city"]} {data["result"][0]["country"]}',
        colour=colour)
    embed.add_field(name=f'{rating} ({rank})',
                    value=f'Max Rating : {data["result"][0]["maxRating"]}',
                    inline=False)
    embed.set_image(url=pic)
    await ctx.channel.send(embed=embed)
示例#3
0
async def handle_sub_url(task_dict, db):
    result_dict = {
        'title': task_dict['title'],
        'date': task_dict['date'],
        'main_text': '',
        'img': '',
        'attachment': '',
        'rank': 0,
        'links_id': task_dict['link_id']
    }
    if task_dict['sub_url'][-4:] in {'.pdf', '.doc', '.docx', '.txt'}:
        result_dict['attachment'] = task_dict['sub_url']
    else:
        request = request_tools.Request(url=task_dict['sub_url'])
        await request.get_page_async()
        content = request.text
        print(task_dict['sub_url'], request.status_info)
        if content:  # 连接成功
            result_dict['main_text'], result_dict['attachment'], result_dict['img'], result_dict['title'], result_dict['date'] = \
                parse(content, db, task_dict['sub_url'], task_dict['main_text_pattern'], task_dict['date_pattern'],
                      task_dict['source_pattern'], task_dict['title_pattern'], task_dict['link_id'], task_dict['title'], task_dict['date'])
    rank = utils.get_rank(result_dict)
    result_dict['rank'] = rank
    save_data(db, result_dict)
示例#4
0
    cudnn.benchmark = True

    if args.load_features:
        train_features = torch.load(
            os.path.join(args.load_features, "trainfeat.pth"))
        test_features = torch.load(
            os.path.join(args.load_features, "testfeat.pth"))
        train_labels = torch.load(
            os.path.join(args.load_features, "trainlabels.pth"))
        test_labels = torch.load(
            os.path.join(args.load_features, "testlabels.pth"))
    else:
        # need to extract features !
        train_features, test_features, train_labels, test_labels = extract_feature_pipeline(
            args)

    if utils.get_rank() == 0:
        if args.use_cuda:
            train_features = train_features.cuda()
            test_features = test_features.cuda()
            train_labels = train_labels.cuda()
            test_labels = test_labels.cuda()

        print("Features are ready!\nStart the k-NN classification.")
        for k in args.nb_knn:
            top1, top5 = knn_classifier(train_features, train_labels,
                                        test_features, test_labels, k,
                                        args.temperature)
            print(f"{k}-NN classifier result: Top1: {top1}, Top5: {top5}")
    dist.barrier()
示例#5
0
def extract_feature_pipeline(args):
    # ============ preparing data ... ============
    transform = pth_transforms.Compose([
        pth_transforms.Resize(256, interpolation=3),
        pth_transforms.CenterCrop(224),
        pth_transforms.ToTensor(),
        pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])
    dataset_train = ReturnIndexDataset(os.path.join(args.data_path, "train"),
                                       transform=transform)
    dataset_val = ReturnIndexDataset(os.path.join(args.data_path, "val"),
                                     transform=transform)
    sampler = torch.utils.data.DistributedSampler(dataset_train, shuffle=False)
    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler,
        batch_size=args.batch_size_per_gpu,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False,
    )
    data_loader_val = torch.utils.data.DataLoader(
        dataset_val,
        batch_size=args.batch_size_per_gpu,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False,
    )
    print(
        f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs."
    )

    # ============ building network ... ============
    model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
    print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
    model.cuda()
    utils.load_pretrained_weights(model, args.pretrained_weights,
                                  args.checkpoint_key, args.arch,
                                  args.patch_size)
    model.eval()

    # ============ extract features ... ============
    print("Extracting features for train set...")
    train_features = extract_features(model, data_loader_train)
    print("Extracting features for val set...")
    test_features = extract_features(model, data_loader_val)

    if utils.get_rank() == 0:
        train_features = nn.functional.normalize(train_features, dim=1, p=2)
        test_features = nn.functional.normalize(test_features, dim=1, p=2)

    train_labels = torch.tensor([s[-1] for s in dataset_train.samples]).long()
    test_labels = torch.tensor([s[-1] for s in dataset_val.samples]).long()
    # save features and labels
    if args.dump_features and dist.get_rank() == 0:
        torch.save(train_features.cpu(),
                   os.path.join(args.dump_features, "trainfeat.pth"))
        torch.save(test_features.cpu(),
                   os.path.join(args.dump_features, "testfeat.pth"))
        torch.save(train_labels.cpu(),
                   os.path.join(args.dump_features, "trainlabels.pth"))
        torch.save(test_labels.cpu(),
                   os.path.join(args.dump_features, "testlabels.pth"))
    return train_features, test_features, train_labels, test_labels
示例#6
0
    def training(self):
        self.net.train()
        save_to_disk = ptutil.get_rank() == 0
        start_training_time = time.time()
        trained_time = 0
        tic = time.time()
        end = time.time()
        iteration, max_iter = 0, self.args.max_iter
        save_iter, eval_iter = self.args.per_iter * self.args.save_epoch, self.args.per_iter * self.args.eval_epoch
        # save_iter, eval_iter = self.args.per_iter * self.args.save_epoch, 10

        logger.info("Start training, total epochs {:3d} = total iteration: {:6d}".format(self.args.epochs, max_iter))

        # TODO: add mixup
        for i, batch in enumerate(self.train_loader):
            iteration += 1
            self.scheduler.step()
            image = batch[0].to(self.device)
            fixed_targets = [batch[it].to(self.device) for it in range(1, 6)]
            gt_boxes = batch[6].to(self.device)

            self.optimizer.zero_grad()
            loss_dict = self.net(image, gt_boxes, *fixed_targets)
            # reduce losses over all GPUs for logging purposes
            loss_dict_reduced = ptutil.reduce_loss_dict(loss_dict)
            losses_reduced = sum(loss for loss in loss_dict_reduced.values())

            loss = sum(loss for loss in loss_dict.values())
            loss.backward()
            self.optimizer.step()
            trained_time += time.time() - end
            end = time.time()
            if iteration % args.log_step == 0:
                eta_seconds = int((trained_time / iteration) * (max_iter - iteration))
                log_str = ["Iteration {:06d} , Lr: {:.5f}, Cost: {:.2f}s, Eta: {}"
                               .format(iteration, self.optimizer.param_groups[0]['lr'], time.time() - tic,
                                       str(datetime.timedelta(seconds=eta_seconds))),
                           "total_loss: {:.3f}".format(losses_reduced.item())]
                for loss_name, loss_item in loss_dict_reduced.items():
                    log_str.append("{}: {:.3f}".format(loss_name, loss_item.item()))
                log_str = ', '.join(log_str)
                logger.info(log_str)
                tic = time.time()
            if save_to_disk and iteration % save_iter == 0:
                model_path = os.path.join(self.args.save_dir, "{}_iter_{:06d}.pth"
                                          .format(self.save_prefix, iteration))
                self.save_model(model_path)
            # Do eval when training, to trace the mAP changes and see performance improved whether or nor
            if self.args.eval_epoch > 0 and iteration % eval_iter == 0 and not iteration == max_iter:
                metrics = self.validate()
                ptutil.synchronize()
                names, values = ptutil.accumulate_metric(metrics)
                if names is not None:
                    log_str = ['{}: {:.5f}'.format(k, v) for k, v in zip(names, values)]
                    log_str = '\n'.join(log_str)
                    logger.info(log_str)
                self.net.train()
        if save_to_disk:
            model_path = os.path.join(self.args.save_dir, "{}_iter_{:06d}.pth"
                                      .format(self.save_prefix, max_iter))
            self.save_model(model_path)

        # compute training time
        total_training_time = int(time.time() - start_training_time)
        total_time_str = str(datetime.timedelta(seconds=total_training_time))
        logger.info(
            "Total training time: {} ({:.4f} s / it)".format(total_time_str, total_training_time / max_iter))
示例#7
0
def main(args, ds_init):
    utils.init_distributed_mode(args)

    if ds_init is not None:
        utils.create_ds_config(args)

    print(args)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    if args.disable_eval_during_finetuning:
        dataset_val = None
    else:
        dataset_val, _ = build_dataset(is_train=False, args=args)

    if True:  # args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        sampler_train = torch.utils.data.DistributedSampler(
            dataset_train,
            num_replicas=num_tasks,
            rank=global_rank,
            shuffle=True)
        print("Sampler_train = %s" % str(sampler_train))
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    if global_rank == 0 and args.log_dir is not None:
        os.makedirs(args.log_dir, exist_ok=True)
        log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
    else:
        log_writer = None

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    if dataset_val is not None:
        data_loader_val = torch.utils.data.DataLoader(
            dataset_val,
            sampler=sampler_val,
            batch_size=int(1.5 * args.batch_size),
            num_workers=args.num_workers,
            pin_memory=args.pin_mem,
            drop_last=False)
    else:
        data_loader_val = None

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        print("Mixup is activated!")
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    model = create_model(
        args.model,
        pretrained=False,
        num_classes=args.nb_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        attn_drop_rate=args.attn_drop_rate,
        drop_block_rate=None,
        use_mean_pooling=args.use_mean_pooling,
        init_scale=args.init_scale,
        use_rel_pos_bias=args.rel_pos_bias,
        use_abs_pos_emb=args.abs_pos_emb,
        init_values=args.layer_scale_init_value,
    )

    patch_size = model.patch_embed.patch_size
    print("Patch size = %s" % str(patch_size))
    args.window_size = (args.input_size // patch_size[0],
                        args.input_size // patch_size[1])
    args.patch_size = patch_size

    if args.finetune:
        if args.finetune.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.finetune,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.finetune, map_location='cpu')

        print("Load ckpt from %s" % args.finetune)
        checkpoint_model = None
        for model_key in args.model_key.split('|'):
            if model_key in checkpoint:
                checkpoint_model = checkpoint[model_key]
                print("Load state_dict by model_key = %s" % model_key)
                break
        if checkpoint_model is None:
            checkpoint_model = checkpoint
        state_dict = model.state_dict()
        for k in ['head.weight', 'head.bias']:
            if k in checkpoint_model and checkpoint_model[
                    k].shape != state_dict[k].shape:
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]

        if model.use_rel_pos_bias and "rel_pos_bias.relative_position_bias_table" in checkpoint_model:
            print(
                "Expand the shared relative position embedding to each transformer block. "
            )
            num_layers = model.get_num_layers()
            rel_pos_bias = checkpoint_model[
                "rel_pos_bias.relative_position_bias_table"]
            for i in range(num_layers):
                checkpoint_model["blocks.%d.attn.relative_position_bias_table"
                                 % i] = rel_pos_bias.clone()

            checkpoint_model.pop("rel_pos_bias.relative_position_bias_table")

        all_keys = list(checkpoint_model.keys())
        for key in all_keys:
            if "relative_position_index" in key:
                checkpoint_model.pop(key)

            if "relative_position_bias_table" in key:
                rel_pos_bias = checkpoint_model[key]
                src_num_pos, num_attn_heads = rel_pos_bias.size()
                dst_num_pos, _ = model.state_dict()[key].size()
                dst_patch_shape = model.patch_embed.patch_shape
                if dst_patch_shape[0] != dst_patch_shape[1]:
                    raise NotImplementedError()
                num_extra_tokens = dst_num_pos - (
                    dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
                src_size = int((src_num_pos - num_extra_tokens)**0.5)
                dst_size = int((dst_num_pos - num_extra_tokens)**0.5)
                if src_size != dst_size:
                    print("Position interpolate for %s from %dx%d to %dx%d" %
                          (key, src_size, src_size, dst_size, dst_size))
                    extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                    rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]

                    def geometric_progression(a, r, n):
                        return a * (1.0 - r**n) / (1.0 - r)

                    left, right = 1.01, 1.5
                    while right - left > 1e-6:
                        q = (left + right) / 2.0
                        gp = geometric_progression(1, q, src_size // 2)
                        if gp > dst_size // 2:
                            right = q
                        else:
                            left = q

                    # if q > 1.090307:
                    #     q = 1.090307

                    dis = []
                    cur = 1
                    for i in range(src_size // 2):
                        dis.append(cur)
                        cur += q**(i + 1)

                    r_ids = [-_ for _ in reversed(dis)]

                    x = r_ids + [0] + dis
                    y = r_ids + [0] + dis

                    t = dst_size // 2.0
                    dx = np.arange(-t, t + 0.1, 1.0)
                    dy = np.arange(-t, t + 0.1, 1.0)

                    print("Original positions = %s" % str(x))
                    print("Target positions = %s" % str(dx))

                    all_rel_pos_bias = []

                    for i in range(num_attn_heads):
                        z = rel_pos_bias[:, i].view(src_size,
                                                    src_size).float().numpy()
                        f = interpolate.interp2d(x, y, z, kind='cubic')
                        all_rel_pos_bias.append(
                            torch.Tensor(f(dx, dy)).contiguous().view(
                                -1, 1).to(rel_pos_bias.device))

                    rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)

                    new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens),
                                                 dim=0)
                    checkpoint_model[key] = new_rel_pos_bias

        # interpolate position embedding
        if 'pos_embed' in checkpoint_model:
            pos_embed_checkpoint = checkpoint_model['pos_embed']
            embedding_size = pos_embed_checkpoint.shape[-1]
            num_patches = model.patch_embed.num_patches
            num_extra_tokens = model.pos_embed.shape[-2] - num_patches
            # height (== width) for the checkpoint position embedding
            orig_size = int(
                (pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
            # height (== width) for the new position embedding
            new_size = int(num_patches**0.5)
            # class_token and dist_token are kept unchanged
            if orig_size != new_size:
                print("Position interpolate from %dx%d to %dx%d" %
                      (orig_size, orig_size, new_size, new_size))
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
                                                embedding_size).permute(
                                                    0, 3, 1, 2)
                pos_tokens = torch.nn.functional.interpolate(
                    pos_tokens,
                    size=(new_size, new_size),
                    mode='bicubic',
                    align_corners=False)
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                checkpoint_model['pos_embed'] = new_pos_embed

        utils.load_state_dict(model,
                              checkpoint_model,
                              prefix=args.model_prefix)
        # model.load_state_dict(checkpoint_model, strict=False)

    model.to(device)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume='')
        print("Using EMA with decay = %.8f" % args.model_ema_decay)

    model_without_ddp = model
    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)

    print("Model = %s" % str(model_without_ddp))
    print('number of params:', n_parameters)

    total_batch_size = args.batch_size * args.update_freq * utils.get_world_size(
    )
    num_training_steps_per_epoch = len(dataset_train) // total_batch_size
    print("LR = %.8f" % args.lr)
    print("Batch size = %d" % total_batch_size)
    print("Update frequent = %d" % args.update_freq)
    print("Number of training examples = %d" % len(dataset_train))
    print("Number of training training per epoch = %d" %
          num_training_steps_per_epoch)

    num_layers = model_without_ddp.get_num_layers()
    if args.layer_decay < 1.0:
        assigner = LayerDecayValueAssigner(
            list(args.layer_decay**(num_layers + 1 - i)
                 for i in range(num_layers + 2)))
    else:
        assigner = None

    if assigner is not None:
        print("Assigned values = %s" % str(assigner.values))

    skip_weight_decay_list = model.no_weight_decay()
    if args.disable_weight_decay_on_rel_pos_bias:
        for i in range(num_layers):
            skip_weight_decay_list.add(
                "blocks.%d.attn.relative_position_bias_table" % i)

    if args.enable_deepspeed:
        loss_scaler = None
        optimizer_params = get_parameter_groups(
            model, args.weight_decay, skip_weight_decay_list,
            assigner.get_layer_id if assigner is not None else None,
            assigner.get_scale if assigner is not None else None)
        model, optimizer, _, _ = ds_init(
            args=args,
            model=model,
            model_parameters=optimizer_params,
            dist_init_required=not args.distributed,
        )

        print("model.gradient_accumulation_steps() = %d" %
              model.gradient_accumulation_steps())
        assert model.gradient_accumulation_steps() == args.update_freq
    else:
        if args.distributed:
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpu], find_unused_parameters=True)
            model_without_ddp = model.module

        optimizer = create_optimizer(args,
                                     model_without_ddp,
                                     skip_list=skip_weight_decay_list,
                                     get_num_layer=assigner.get_layer_id
                                     if assigner is not None else None,
                                     get_layer_scale=assigner.get_scale
                                     if assigner is not None else None)
        loss_scaler = NativeScaler()

    print("Use step level LR scheduler!")
    lr_schedule_values = utils.cosine_scheduler(
        args.lr,
        args.min_lr,
        args.epochs,
        num_training_steps_per_epoch,
        warmup_epochs=args.warmup_epochs,
        warmup_steps=args.warmup_steps,
    )
    if args.weight_decay_end is None:
        args.weight_decay_end = args.weight_decay
    wd_schedule_values = utils.cosine_scheduler(args.weight_decay,
                                                args.weight_decay_end,
                                                args.epochs,
                                                num_training_steps_per_epoch)
    print("Max WD = %.7f, Min WD = %.7f" %
          (max(wd_schedule_values), min(wd_schedule_values)))

    if mixup_fn is not None:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing > 0.:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    print("criterion = %s" % str(criterion))

    utils.auto_load_model(args=args,
                          model=model,
                          model_without_ddp=model_without_ddp,
                          optimizer=optimizer,
                          loss_scaler=loss_scaler,
                          model_ema=model_ema)

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        exit(0)

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)
        if log_writer is not None:
            log_writer.set_step(epoch * num_training_steps_per_epoch *
                                args.update_freq)
        train_stats = train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            args.clip_grad,
            model_ema,
            mixup_fn,
            log_writer=log_writer,
            start_steps=epoch * num_training_steps_per_epoch,
            lr_schedule_values=lr_schedule_values,
            wd_schedule_values=wd_schedule_values,
            num_training_steps_per_epoch=num_training_steps_per_epoch,
            update_freq=args.update_freq,
        )
        if args.output_dir and args.save_ckpt:
            if (epoch +
                    1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
                utils.save_model(args=args,
                                 model=model,
                                 model_without_ddp=model_without_ddp,
                                 optimizer=optimizer,
                                 loss_scaler=loss_scaler,
                                 epoch=epoch,
                                 model_ema=model_ema)
        if data_loader_val is not None:
            test_stats = evaluate(data_loader_val, model, device)
            print(
                f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
            )
            if max_accuracy < test_stats["acc1"]:
                max_accuracy = test_stats["acc1"]
                if args.output_dir and args.save_ckpt:
                    utils.save_model(args=args,
                                     model=model,
                                     model_without_ddp=model_without_ddp,
                                     optimizer=optimizer,
                                     loss_scaler=loss_scaler,
                                     epoch="best",
                                     model_ema=model_ema)

            print(f'Max accuracy: {max_accuracy:.2f}%')
            if log_writer is not None:
                log_writer.update(test_acc1=test_stats['acc1'],
                                  head="perf",
                                  step=epoch)
                log_writer.update(test_acc5=test_stats['acc5'],
                                  head="perf",
                                  step=epoch)
                log_writer.update(test_loss=test_stats['loss'],
                                  head="perf",
                                  step=epoch)

            log_stats = {
                **{f'train_{k}': v
                   for k, v in train_stats.items()},
                **{f'test_{k}': v
                   for k, v in test_stats.items()}, 'epoch': epoch,
                'n_parameters': n_parameters
            }
        else:
            log_stats = {
                **{f'train_{k}': v
                   for k, v in train_stats.items()},
                # **{f'test_{k}': v for k, v in test_stats.items()},
                'epoch': epoch,
                'n_parameters': n_parameters
            }

        if args.output_dir and utils.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(os.path.join(args.output_dir, "log.txt"),
                      mode="a",
                      encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
示例#8
0
def main():
    global timeout_sent

    args = parse_arguments()
        
    random.seed(args.seed + args.local_rank)
    np.random.seed(args.seed + args.local_rank)
    torch.manual_seed(args.seed + args.local_rank)
    torch.cuda.manual_seed(args.seed + args.local_rank)
    worker_init = WorkerInitObj(args.seed + args.local_rank)

    device, args = setup_training(args)
    dllogger.log(step="PARAMETER", data={"Config": [str(args)]})

    # Prepare optimizer
    model, optimizer, lr_scheduler, checkpoint, global_step, criterion = prepare_model_and_optimizer(args, device)

    if args.disable_weight_tying:
       # Sanity Check that new param is in optimizer
       print ("SANITY CHECK OPTIMIZER: ", id(model.module.cls.predictions.decoder.weight) in [id(g) for g in optimizer.param_groups[0]['params']])
       assert id(model.module.cls.predictions.decoder.weight) in [id(g) for g in optimizer.param_groups[0]['params']]

    print (f"SAVING EVERY {args.num_steps_per_checkpoint} STEPS!")

    if is_main_process():
        dllogger.log(step="PARAMETER", data={"SEED": args.seed})

    raw_train_start = None


    if args.do_train:
        if is_main_process():
            dllogger.log(step="PARAMETER", data={"train_start": True})
            dllogger.log(step="PARAMETER", data={"batch_size_per_gpu": args.train_batch_size})
            dllogger.log(step="PARAMETER", data={"learning_rate": args.learning_rate})

        model.train()
        most_recent_ckpts_paths = []
        average_loss = 0.0  # averaged loss every args.log_freq steps
        epoch = 0
        training_steps = 0

        pool = ProcessPoolExecutor(1)

        # Note: We loop infinitely over epochs, termination is handled via iteration count
        while True:
            thread = None
            restored_data_loader = None
            if not args.resume_from_checkpoint or epoch > 0 or (args.phase2 and global_step < 1) or args.init_checkpoint:
                files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
                         os.path.isfile(os.path.join(args.input_dir, f)) and ('training' in f or 'train' in f)]
                files.sort()
                num_files = len(files)
                random.Random(args.seed + epoch).shuffle(files)
                f_start_id = 0
            else:
                f_start_id = checkpoint['files'][0]
                files = checkpoint['files'][1:]
                args.resume_from_checkpoint = False
                num_files = len(files)
                # may not exist in all checkpoints
                epoch = checkpoint.get('epoch', 0)
                restored_data_loader = checkpoint.get('data_loader', None)

            shared_file_list = {}

            if torch.distributed.is_initialized() and get_world_size() > num_files:
                remainder = get_world_size() % num_files
                data_file = files[(f_start_id*get_world_size()+get_rank() + remainder*f_start_id)%num_files]
            else:
                data_file = files[(f_start_id*get_world_size()+get_rank())%num_files]

            previous_file = data_file

            if restored_data_loader is None:
                train_data = pretraining_dataset(data_file, args.max_predictions_per_seq)
                train_sampler = RandomSampler(train_data)
                train_dataloader = DataLoader(train_data, sampler=train_sampler,
                                              batch_size=args.train_batch_size * args.n_gpu,
                                              num_workers=4, worker_init_fn=worker_init,
                                              pin_memory=True)
                # shared_file_list["0"] = (train_dataloader, data_file)
            else:
                train_dataloader = restored_data_loader
                restored_data_loader = None

            overflow_buf = None
            if args.allreduce_post_accumulation:
                overflow_buf = torch.cuda.IntTensor([0])

            for f_id in range(f_start_id + 1 , len(files)):
                
   
                if get_world_size() > num_files:
                    data_file = files[(f_id*get_world_size()+get_rank() + remainder*f_id)%num_files]
                else:
                    data_file = files[(f_id*get_world_size()+get_rank())%num_files]

                previous_file = data_file

                dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init)

                train_iter = tqdm(train_dataloader, desc="Iteration", disable=args.disable_progress_bar) if is_main_process() else train_dataloader

                if raw_train_start is None:
                    raw_train_start = time.time()
                for step, batch in enumerate(train_iter):
                    training_steps += 1
                    batch = [t.to(device) for t in batch]
                    input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
                    prediction_scores, seq_relationship_score = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
                    loss, mlm_loss, ns_loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels)
                    if args.n_gpu > 1:
                        loss = loss.mean()  # mean() to average on multi-gpu.
                        mlm_loss = mlm_loss.detach().mean()
                        ns_loss = ns_loss.detach().mean()

                    divisor = args.gradient_accumulation_steps
                    if args.gradient_accumulation_steps > 1:
                        if not args.allreduce_post_accumulation:
                            # this division was merged into predivision
                            loss = loss / args.gradient_accumulation_steps
                            mlm_loss = mlm_loss.detach() / args.gradient_accumulation_steps
                            ns_loss = ns_loss.detach() / args.gradient_accumulation_steps
                            divisor = 1.0
                    if args.fp16:
                        with amp.scale_loss(loss, optimizer, delay_overflow_check=args.allreduce_post_accumulation) as scaled_loss:
                            scaled_loss.backward()
                    else:
                        loss.backward()

                    average_loss += loss.item()

                    if training_steps % args.gradient_accumulation_steps == 0:
                        lr_scheduler.step()  # learning rate warmup
                        global_step = take_optimizer_step(args, optimizer, model, overflow_buf, global_step)

                    if global_step >= args.steps_this_run or timeout_sent:
                        train_time_raw = time.time() - raw_train_start
                        last_num_steps = int(training_steps / args.gradient_accumulation_steps) % args.log_freq
                        last_num_steps = args.log_freq if last_num_steps == 0 else last_num_steps
                        average_loss = torch.tensor(average_loss, dtype=torch.float32).cuda()
                        average_loss = average_loss / (last_num_steps * divisor)
                        if (torch.distributed.is_initialized()):
                            average_loss /= get_world_size()
                            torch.distributed.all_reduce(average_loss)
                        final_loss = average_loss.item()
                        if is_main_process():
                            dllogger.log(step=(epoch, global_step, ), data={"final_loss": final_loss})
                    elif training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
                        if is_main_process():
                            dllogger.log(step=(epoch, global_step, ), data={"average_loss": average_loss / (args.log_freq * divisor),
                                                                            "step_loss": loss.item() * args.gradient_accumulation_steps / divisor,
                                                                            "learning_rate": optimizer.param_groups[0]['lr'],
                                                                            "mlm_loss" : mlm_loss.item(),
                                                                            "ns_loss" : ns_loss.item()})
                        average_loss = 0


                    if global_step >= args.steps_this_run or training_steps % (
                            args.num_steps_per_checkpoint * args.gradient_accumulation_steps) == 0 or timeout_sent:
                        if is_main_process() and not args.skip_checkpoint:
                            # Save a trained model
                            dllogger.log(step="PARAMETER", data={"checkpoint_step": global_step})
                            model_to_save = model.module if hasattr(model,
                                                                    'module') else model  # Only save the model it-self
                            if args.resume_step < 0 or not args.phase2:
                                output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step))
                            else:
                                output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step + args.phase1_end_step))
                            if args.do_train:
                                torch.save({'model': model_to_save.state_dict(),
                                            'optimizer': optimizer.state_dict(),
                                            'master params': list(amp.master_params(optimizer)),
                                            'files': [f_id] + files,
                                            'epoch': epoch,
                                            'data_loader': None if global_step >= args.max_steps else train_dataloader}, output_save_file)

                                most_recent_ckpts_paths.append(output_save_file)

                        # Exiting the training due to hitting max steps, or being sent a 
                        # timeout from the cluster scheduler
                        if global_step >= args.steps_this_run or timeout_sent:
                            del train_dataloader
                            # thread.join()
                            return args, final_loss, train_time_raw, global_step

                del train_dataloader
                # thread.join()
                # Make sure pool has finished and switch train_dataloader
                # NOTE: Will block until complete
                train_dataloader, data_file = dataset_future.result(timeout=None)

            epoch += 1
def main():
    args = parse_args()

    hvd.init()
    set_affinity(hvd.local_rank())

    if is_main_process():
        log("Running total processes: {}".format(get_world_size()))
    log("Starting process: {}".format(get_rank()))

    if is_main_process():
        dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
                                                           filename=args.json_summary),
                                dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)])
    else:
        dllogger.init(backends=[])

    tf.random.set_seed(args.seed)
    dllogger.log(step="PARAMETER", data={"SEED": args.seed})
    # script parameters
    BATCH_SIZE = args.train_batch_size
    EVAL_BATCH_SIZE = args.predict_batch_size
    USE_XLA = args.xla
    USE_AMP = args.amp
    EPOCHS = args.num_train_epochs

    if not args.do_train:
        EPOCHS = args.num_train_epochs = 1
        log("Since running inference only, setting args.num_train_epochs to 1")

    if not os.path.exists(args.output_dir) and is_main_process():
        os.makedirs(args.output_dir)

    # TensorFlow configuration
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
        tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
    tf.config.optimizer.set_jit(USE_XLA)
    #tf.config.optimizer.set_experimental_options({"auto_mixed_precision": USE_AMP})
    
    if args.amp:
        policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16", loss_scale="dynamic")
        tf.keras.mixed_precision.experimental.set_policy(policy)
        print('Compute dtype: %s' % policy.compute_dtype)  # Compute dtype: float16
        print('Variable dtype: %s' % policy.variable_dtype)  # Variable dtype: float32

    if is_main_process():
        log("***** Loading tokenizer and model *****")
    # Load tokenizer and model from pretrained model/vocabulary. Specify the number of labels to classify (2+: classification, 1: regression)
    electra_model = args.electra_model
    config = ElectraConfig.from_pretrained(electra_model, cache_dir=args.cache_dir)
    config.update({"amp": args.amp})
    if args.vocab_file is None:
        tokenizer = ElectraTokenizer.from_pretrained(electra_model, cache_dir=args.cache_dir)
    else:
        tokenizer = ElectraTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case)

    model = TFElectraForQuestionAnswering.from_pretrained(electra_model, config=config, cache_dir=args.cache_dir, args=args)

    if is_main_process():
        log("***** Loading dataset *****")
    # Load data
    processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
    train_examples = processor.get_train_examples(args.data_dir) if args.do_train else None
    dev_examples = processor.get_dev_examples(args.data_dir) if args.do_predict else None

    if is_main_process():
        log("***** Loading features *****")
    # Load cached features
    squad_version = '2.0' if args.version_2_with_negative else '1.1'
    if args.cache_dir is None:
        args.cache_dir = args.data_dir
    cached_train_features_file = args.cache_dir.rstrip('/') + '/' + 'TF2_train-v{4}.json_{1}_{2}_{3}'.format(
        electra_model.split("/")[1], str(args.max_seq_length), str(args.doc_stride),
        str(args.max_query_length), squad_version)
    cached_dev_features_file = args.cache_dir.rstrip('/') + '/' + 'TF2_dev-v{4}.json_{1}_{2}_{3}'.format(
        electra_model.split("/")[1], str(args.max_seq_length), str(args.doc_stride),
        str(args.max_query_length), squad_version)

    try:
        with open(cached_train_features_file, "rb") as reader:
            train_features = pickle.load(reader) if args.do_train else []
        with open(cached_dev_features_file, "rb") as reader:
            dev_features = pickle.load(reader) if args.do_predict else []
    except:
        train_features = (  # TODO: (yy) do on rank 0?
            squad_convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True,
                return_dataset="",
            )
            if args.do_train
            else []
        )
        dev_features = (
            squad_convert_examples_to_features(
                examples=dev_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=False,
                return_dataset="",
            )
            if args.do_predict
            else []
        )
        # Dump Cached features
        if not args.skip_cache and is_main_process():
            if args.do_train:
                log("***** Building Cache Files: {} *****".format(cached_train_features_file))
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
            if args.do_predict:
                log("***** Building Cache Files: {} *****".format(cached_dev_features_file))
                with open(cached_dev_features_file, "wb") as writer:
                    pickle.dump(dev_features, writer)

    len_train_features = len(train_features)
    total_train_steps = int((len_train_features * EPOCHS / BATCH_SIZE) / get_world_size()) + 1
    train_steps_per_epoch = int((len_train_features / BATCH_SIZE) / get_world_size()) + 1
    len_dev_features = len(dev_features)
    total_dev_steps = int((len_dev_features / EVAL_BATCH_SIZE)) + 1

    train_dataset = get_dataset_from_features(train_features, BATCH_SIZE,
                                              v2=args.version_2_with_negative) if args.do_train else []
    dev_dataset = get_dataset_from_features(dev_features, EVAL_BATCH_SIZE, drop_remainder=False, ngpu=1, mode="dev",
                                            v2=args.version_2_with_negative) if args.do_predict else []

    opt = create_optimizer(init_lr=args.learning_rate, num_train_steps=total_train_steps,
                           num_warmup_steps=int(args.warmup_proportion * total_train_steps),
                           weight_decay_rate=args.weight_decay_rate,
                           layerwise_lr_decay=args.layerwise_lr_decay,
                           n_transformer_layers=model.num_hidden_layers)
    if USE_AMP:
        # loss scaling is currently required when using mixed precision
        opt = tf.keras.mixed_precision.experimental.LossScaleOptimizer(opt, "dynamic")

    # Define loss function
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    loss_class = tf.keras.losses.BinaryCrossentropy(
        from_logits=True,
        name='binary_crossentropy'
    )
    metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
    model.compile(optimizer=opt, loss=loss, metrics=[metric])
    train_loss_results = []

    if args.do_train and is_main_process():
        log("***** Running training *****")
        log("  Num examples = ", len_train_features)
        log("  Num Epochs = ", args.num_train_epochs)
        log("  Instantaneous batch size per GPU = ", args.train_batch_size)
        log(
            "  Total train batch size (w. parallel, distributed & accumulation) = ",
            args.train_batch_size
            * get_world_size(),
        )
        log("  Total optimization steps =", total_train_steps)

    total_train_time = 0
    latency = []
    for epoch in range(EPOCHS):
        if args.do_train:
            epoch_loss_avg = tf.keras.metrics.Mean()
            epoch_perf_avg = tf.keras.metrics.Mean()
            epoch_start = time.time()

            epoch_iterator = tqdm(train_dataset, total=train_steps_per_epoch, desc="Iteration", mininterval=5,
                                  disable=not is_main_process())
            for iter, inputs in enumerate(epoch_iterator):
                # breaking criterion if max_steps if > 1
                if args.max_steps > 0 and (epoch * train_steps_per_epoch + iter) > args.max_steps:
                    break
                iter_start = time.time()
                # Optimize the model
                loss_value = train_step(model, inputs, loss, USE_AMP, opt, (iter == 0 and epoch == 0),
                                        v2=args.version_2_with_negative, loss_class=loss_class, fp16=USE_AMP)
                epoch_perf_avg.update_state(1. * BATCH_SIZE / (time.time() - iter_start))
                if iter % args.log_freq == 0:
                    if is_main_process():
                        log("\nEpoch: {:03d}, Step:{:6d}, Loss:{:12.8f}, Perf:{:5.0f}, loss_scale:{}, opt_step:{}".format(epoch, iter, loss_value,
                                                                                              epoch_perf_avg.result() * get_world_size(), opt.loss_scale if config.amp else 1,
                                                                                              int(opt.iterations)))
                    dllogger.log(step=(epoch, iter,), data={"step_loss": float(loss_value.numpy()),
                                                            "train_perf": float( epoch_perf_avg.result().numpy() * get_world_size())})

                # Track progress
                epoch_loss_avg.update_state(loss_value)  # Add current batch loss

            # End epoch
            train_loss_results.append(epoch_loss_avg.result())
            total_train_time += float(time.time() - epoch_start)
            # Summarize and save checkpoint at the end of each epoch
            if is_main_process():

                dllogger.log(step=tuple(), data={"e2e_train_time": total_train_time,
                                                 "training_sequences_per_second": float(
                                                     epoch_perf_avg.result().numpy() * get_world_size()),
                                                 "final_loss": float(epoch_loss_avg.result().numpy())})

            if not args.skip_checkpoint:
                if args.ci:
                    checkpoint_name = "{}/electra_base_qa_v2_{}_epoch_{}_ckpt".format(args.output_dir, args.version_2_with_negative, epoch + 1)
                else:
                    checkpoint_name = "checkpoints/electra_base_qa_v2_{}_epoch_{}_ckpt".format(args.version_2_with_negative, epoch + 1)
                if is_main_process():
                    model.save_weights(checkpoint_name)


        if args.do_predict and (args.evaluate_during_training or epoch == args.num_train_epochs - 1):
            if not args.do_train:
                log("***** Loading checkpoint: {} *****".format(args.init_checkpoint))
                model.load_weights(args.init_checkpoint).expect_partial()

            current_feature_id = 0
            all_results = []
            if is_main_process():
                log("***** Running evaluation *****")
                log("  Num Batches = ", total_dev_steps)
                log("  Batch size = ", args.predict_batch_size)

            raw_infer_start = time.time()
            if is_main_process():
                infer_perf_avg = tf.keras.metrics.Mean()
                dev_iterator = tqdm(dev_dataset, total=total_dev_steps, desc="Iteration", mininterval=5,
                                    disable=not is_main_process())
                for input_ids, input_mask, segment_ids, start_positions, end_positions, cls_index, p_mask, is_impossible in dev_iterator:
                    # training=False is needed only if there are layers with different
                    # behavior during training versus inference (e.g. Dropout).

                    iter_start = time.time()

                    if not args.joint_head:
                        batch_start_logits, batch_end_logits = infer_step(model, input_ids,
                                                                          attention_mask=input_mask,
                                                                          token_type_ids=segment_ids,
                                                                          )[:2]
                        #Synchronize with GPU to compute time
                        _ = batch_start_logits.numpy()
                                                            
                    else:
                        
                        outputs = infer_step(model, input_ids,
                                             attention_mask=input_mask,
                                             token_type_ids=segment_ids,
                                             cls_index=cls_index,
                                             p_mask=p_mask,
                                             )
                        #Synchronize with GPU to compute time
                        _ = outputs[0].numpy()

                    infer_time = (time.time() - iter_start)
                    infer_perf_avg.update_state(1. * EVAL_BATCH_SIZE / infer_time)
                    latency.append(infer_time)

                    for iter_ in range(input_ids.shape[0]):

                        if not args.joint_head:
                            start_logits = batch_start_logits[iter_].numpy().tolist()
                            end_logits = batch_end_logits[iter_].numpy().tolist()
                            dev_feature = dev_features[current_feature_id]
                            current_feature_id += 1
                            unique_id = int(dev_feature.unique_id)
                            all_results.append(RawResult(unique_id=unique_id,
                                                         start_logits=start_logits,
                                                         end_logits=end_logits))
                        else:
                            dev_feature = dev_features[current_feature_id]
                            current_feature_id += 1
                            unique_id = int(dev_feature.unique_id)
                            output = [output[iter_].numpy().tolist() for output in outputs]

                            start_logits = output[0]
                            start_top_index = output[1]
                            end_logits = output[2]
                            end_top_index = output[3]
                            cls_logits = output[4]
                            result = SquadResult(
                                unique_id,
                                start_logits,
                                end_logits,
                                start_top_index=start_top_index,
                                end_top_index=end_top_index,
                                cls_logits=cls_logits,
                            )

                            all_results.append(result)

                # Compute and save predictions
                answers, nbest_answers = get_answers(dev_examples, dev_features, all_results, args)

                output_prediction_file = os.path.join(args.output_dir, "predictions.json")
                output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
                e2e_infer_time = time.time() - raw_infer_start
                # if args.version_2_with_negative:
                #     output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
                # else:
                #     output_null_log_odds_file = None
                with open(output_prediction_file, "w") as f:
                    f.write(json.dumps(answers, indent=4) + "\n")
                with open(output_nbest_file, "w") as f:
                    f.write(json.dumps(nbest_answers, indent=4) + "\n")

                if args.do_eval:
                    if args.version_2_with_negative:
                        dev_file = "dev-v2.0.json"
                    else:
                        dev_file = "dev-v1.1.json"

                    eval_out = subprocess.check_output([sys.executable, args.eval_script,
                                                        args.data_dir + "/" + dev_file, output_prediction_file])
                    log(eval_out.decode('UTF-8'))
                    scores = str(eval_out).strip()
                    exact_match = float(scores.split(":")[1].split(",")[0])
                    if args.version_2_with_negative:
                        f1 = float(scores.split(":")[2].split(",")[0])
                    else:
                        f1 = float(scores.split(":")[2].split("}")[0])

                    log("Epoch: {:03d} Results: {}".format(epoch, eval_out.decode('UTF-8')))
                    log("**EVAL SUMMARY** - Epoch: {:03d},  EM: {:6.3f}, F1: {:6.3f}, Infer_Perf: {:4.0f} seq/s"
                          .format(epoch, exact_match, f1, infer_perf_avg.result()))

                latency_all = sorted(latency)[:-2]
                log(
                    "**LATENCY SUMMARY** - Epoch: {:03d},  Ave: {:6.3f} ms, 90%: {:6.3f} ms, 95%: {:6.3f} ms, 99%: {:6.3f} ms"
                    .format(epoch, sum(latency_all) / len(latency_all) * 1000,
                            sum(latency_all[:int(len(latency_all) * 0.9)]) / int(len(latency_all) * 0.9) * 1000,
                            sum(latency_all[:int(len(latency_all) * 0.95)]) / int(len(latency_all) * 0.95) * 1000,
                            sum(latency_all[:int(len(latency_all) * 0.99)]) / int(len(latency_all) * 0.99) * 1000,
                            ))
                dllogger.log(step=tuple(),
                             data={"inference_sequences_per_second": float(infer_perf_avg.result().numpy()), 
                                   "e2e_inference_time": e2e_infer_time})

    if is_main_process() and args.do_train and args.do_eval:
        log(
            "**RESULTS SUMMARY** - EM: {:6.3f}, F1: {:6.3f}, Train_Time: {:4.0f} s, Train_Perf: {:4.0f} seq/s, Infer_Perf: {:4.0f} seq/s"
            .format(exact_match, f1, total_train_time, epoch_perf_avg.result() * get_world_size(),
                    infer_perf_avg.result()))
        dllogger.log(step=tuple(), data={"exact_match": exact_match, "F1": f1})
示例#10
0
    parser.add_argument(
        "--config-file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument('--local_rank', default=0, help='set GPU id', type=int)
    args = parser.parse_args()

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1

    cfg.merge_from_file(args.config_file)
    cfg.freeze()
    if get_rank() == 0:
        if not os.path.isdir(cfg.OUTPUT_DIR):
            try:
                os.mkdir(cfg.OUTPUT_DIR)
            except FileExistsError:
                print('%s alreadly exist' % cfg.OUTPUT_DIR)

    is_distributed = (num_gpus > 1)
    if is_distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method="env://")
        synchronize()

    if cfg.MODEL.DEVICE is 'cuda':
        cudnn.benchmark = True
示例#11
0
文件: main.py 项目: dinhsang111997/AI
def main(args):
    utils.init_distributed_mode(args)

    print(args)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if True:  # args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.repeated_aug:
            sampler_train = RASampler(dataset_train,
                                      num_replicas=num_tasks,
                                      rank=global_rank,
                                      shuffle=True)
        else:
            sampler_train = torch.utils.data.DistributedSampler(
                dataset_train,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=True)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  batch_size=int(
                                                      1.5 * args.batch_size),
                                                  shuffle=False,
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    model = create_model(
        args.model,
        pretrained=False,
        num_classes=args.nb_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
    )

    # TODO: finetuning

    model.to(device)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume='')

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model)
    loss_scaler = NativeScaler()

    lr_scheduler, _ = create_scheduler(args, optimizer)

    criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    output_dir = Path(args.output_dir)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema,
                                               checkpoint['model_ema'])

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print("Start training")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        train_stats = train_one_epoch(model, criterion, data_loader_train,
                                      optimizer, device, epoch, loss_scaler,
                                      args.clip_grad, model_ema, mixup_fn)

        lr_scheduler.step(epoch)
        if args.output_dir:
            checkpoint_paths = [output_dir / 'checkpoint.pth']
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'model_ema': get_state_dict(model_ema),
                        'args': args,
                    }, checkpoint_path)

        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        max_accuracy = max(max_accuracy, test_stats["acc1"])
        print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {
            **{f'train_{k}': v
               for k, v in train_stats.items()},
            **{f'test_{k}': v
               for k, v in test_stats.items()}, 'epoch': epoch,
            'n_parameters': n_parameters
        }

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
示例#12
0
def main(args):
    utils.init_distributed_mode(args)

    print(args)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    model = get_model(args)
    patch_size = model.patch_embed.patch_size
    print("Patch size = %s" % str(patch_size))
    args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1])
    args.patch_size = patch_size

    # get dataset
    dataset_train = build_beit_pretraining_dataset(args)

    # prepare discrete vae
    d_vae = utils.create_d_vae(
        weight_path=args.discrete_vae_weight_path, d_vae_type=args.discrete_vae_type,
        device=device, image_size=args.second_input_size)

    if True:  # args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        sampler_rank = global_rank
        num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks

        sampler_train = torch.utils.data.DistributedSampler(
            dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True
        )
        print("Sampler_train = %s" % str(sampler_train))
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)

    if global_rank == 0 and args.log_dir is not None:
        os.makedirs(args.log_dir, exist_ok=True)
        log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
    else:
        log_writer = None

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train, sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    model.to(device)
    model_without_ddp = model
    n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)

    print("Model = %s" % str(model_without_ddp))
    print('number of params:', n_parameters)

    total_batch_size = args.batch_size * utils.get_world_size()
    print("LR = %.8f" % args.lr)
    print("Batch size = %d" % total_batch_size)
    print("Number of training steps = %d" % num_training_steps_per_epoch)
    print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))

    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
        model_without_ddp = model.module

    optimizer = create_optimizer(
        args, model_without_ddp)
    loss_scaler = NativeScaler()

    print("Use step level LR & WD scheduler!")
    lr_schedule_values = utils.cosine_scheduler(
        args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
        warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
    )
    if args.weight_decay_end is None:
        args.weight_decay_end = args.weight_decay
    wd_schedule_values = utils.cosine_scheduler(
        args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
    print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))

    utils.auto_load_model(
        args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)
        if log_writer is not None:
            log_writer.set_step(epoch * num_training_steps_per_epoch)
        train_stats = train_one_epoch(
            model, d_vae, data_loader_train,
            optimizer, device, epoch, loss_scaler,
            args.clip_grad, log_writer=log_writer,
            start_steps=epoch * num_training_steps_per_epoch,
            lr_schedule_values=lr_schedule_values,
            wd_schedule_values=wd_schedule_values,
        )
        if args.output_dir:
            if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
                utils.save_model(
                    args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                    loss_scaler=loss_scaler, epoch=epoch)

        log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                     'epoch': epoch, 'n_parameters': n_parameters}

        if args.output_dir and utils.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
示例#13
0
    out_file = os.path.join(prediction_dir,
                            prediction_file_base + '.readable.txt')

    with open(out_file, 'w', encoding=ENCODING) as f:
        for data_line, prediction_line in zip(
                open(answer_file, encoding=ENCODING),
                open(prediction_file, encoding=ENCODING)):
            data = json.loads(data_line)
            question = data['question']
            answer = [normalize(a) for a in data['answer']]
            prediction = json.loads(prediction_line)
            doc_predictions = sorted(prediction,
                                     key=lambda k: k['doc_score'],
                                     reverse=True)
            doc_rank = get_rank(doc_predictions, answer, match_func)

            ans_rank = get_rank(
                sorted(prediction, key=lambda k: k['span_score'],
                       reverse=True), answer, match_func)
            qa_str = 'q_{}: {}\n'.format(question_count, question)
            qa_str += 'ans_rank: {}, doc_rank: {}, answer: {}\n'.format(
                ans_rank, doc_rank, '; '.join(answer))

            for d_no, ans_prediction in enumerate(doc_predictions, 1):
                qa_str += '\tdoc_{:3s}: {:12s}, d_score: {:.4f}, a_score: {:.4f}, ans: {:20s}, s: {}, e: {}\n'.format(
                    str(d_no), ans_prediction['doc_id'],
                    ans_prediction['doc_score'], ans_prediction['span_score'],
                    ans_prediction['span'], ans_prediction['start'],
                    ans_prediction['end'])
示例#14
0
def main(args):
    utils.init_distributed_mode(args)
    print("git:\n  {}\n".format(utils.get_sha()))
    if args.mask_model != "none":
        args.masks = True
    print(args)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)

    model, criterion, postprocessor = build_model(args)
    postprocessor.rescale_to_orig_size = True  # for evaluation
    model.to(device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = builtins.sum(p.numel() for p in model.parameters()
                                if p.requires_grad)
    print("number of params:", n_parameters)

    # optimizer = torch.optim.Adam(model.parameters())
    param_dicts = [
        {
            "params": [
                p for n, p in model_without_ddp.named_parameters()
                if "backbone" not in n
            ]
        },
        {
            "params": [
                p for n, p in model_without_ddp.named_parameters()
                if "backbone" in n
            ],
            "lr":
            args.lr_backbone,
        },
    ]
    if args.optimizer == "sgd":
        optimizer = torch.optim.SGD(param_dicts,
                                    lr=args.lr,
                                    momentum=0.9,
                                    weight_decay=args.weight_decay)
    elif args.optimizer in ["adam", "adamw"]:
        optimizer = torch.optim.AdamW(param_dicts,
                                      lr=args.lr,
                                      weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Unsupported optimizer {args.optimizer}")

    if args.schedule == "step":
        lr_scheduler = StepLR(optimizer, args.lr_drop)
    elif args.schedule == "multistep":
        milestones = list(range(args.lr_drop, args.epochs, 50))
        lr_scheduler = MultiStepLR(optimizer, gamma=0.5, milestones=milestones)

    dataset_train = build_dataset(image_set="trainval", args=args)
    dataset_val = build_dataset(image_set="test", args=args)

    if args.distributed:
        sampler_train = DistributedSampler(dataset_train)
        sampler_val = DistributedSampler(dataset_val, shuffle=False)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    batch_sampler_train = torch.utils.data.BatchSampler(sampler_train,
                                                        args.batch_size,
                                                        drop_last=True)

    data_loader_train = DataLoader(
        dataset_train,
        batch_sampler=batch_sampler_train,
        collate_fn=utils.collate_fn,
        num_workers=args.num_workers,
    )
    data_loader_val = DataLoader(
        dataset_val,
        args.batch_size,
        sampler=sampler_val,
        drop_last=False,
        collate_fn=utils.collate_fn,
        num_workers=args.num_workers,
    )

    if args.dataset_file == "coco_panoptic":
        # We also evaluate AP during panoptic training, on original coco DS
        coco_val = datasets.coco.build("val", args)
        base_ds = to_coco_api.get_coco_api_from_dataset(coco_val)
    else:
        base_ds = None  # to_coco_api.get_coco_api_from_dataset(dataset_val)

    output_dir = Path(args.output_dir)
    if args.resume:
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1

    if args.eval:
        test_stats, coco_evaluator = evaluate(
            model,
            criterion,
            postprocessor,
            data_loader_val,
            base_ds,
            device,
            eval_bbox=True,
            eval_masks=args.masks,
        )
        if args.output_dir:
            utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval,
                                 output_dir / "eval.pth")
        return

    print("Start training")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            sampler_train.set_epoch(epoch)
        train_stats = train_one_epoch(model, criterion, data_loader_train,
                                      optimizer, device, epoch,
                                      args.clip_max_norm)
        lr_scheduler.step()
        if args.output_dir:
            checkpoint_paths = [output_dir / "checkpoint.pth"]
            # extra checkpoint before LR drop and every 100 epochs
            if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
                checkpoint_paths.append(output_dir /
                                        f"checkpoint{epoch:04}.pth")
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        "model": model_without_ddp.state_dict(),
                        "optimizer": optimizer.state_dict(),
                        "lr_scheduler": lr_scheduler.state_dict(),
                        "epoch": epoch,
                        "args": args,
                    },
                    checkpoint_path,
                )

        # if epoch % args.eval_skip == 0:
        #     test_stats, coco_evaluator = evaluate(
        #         model, criterion, postprocessor, data_loader_val, base_ds, device, eval_bbox=True, eval_masks=args.masks
        #     )
        # else:
        #     test_stats, coco_evaluator = {}, None
        test_stats, coco_evaluator = {}, None

        log_stats = {
            **{f"train_{k}": v
               for k, v in train_stats.items()},
            **{f"test_{k}": v
               for k, v in test_stats.items()},
            "n_parameters": n_parameters,
        }

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

            # for evaluation logs
            if coco_evaluator is not None:
                os.makedirs(os.path.join(args.output_dir, "eval"),
                            exist_ok=True)
                if "bbox" in coco_evaluator.coco_eval:
                    filenames = ["latest.pth"]
                    if epoch % 50 == 0:
                        filenames.append(f"{epoch:03}.pth")
                    for name in filenames:
                        torch.save(coco_evaluator.coco_eval["bbox"].eval,
                                   output_dir / "eval" / name)

            with (output_dir / "log_tb.txt").open("a") as f:
                f.write(f"TORCHBOARD_METRICS[epoch] = {epoch}\n")
                for k, v in vars(args).items():
                    f.write(f"TORCHBOARD_METRICS[{k}] = {v}")
                for key in log_stats:
                    v = log_stats[key]
                    if isinstance(v, list):
                        for i, vi in enumerate(v):
                            f.write(f"TORCHBOARD_METRICS[{key}_{i}] = {vi}\n")
                    else:
                        f.write(f"TORCHBOARD_METRICS[{key}] = {v}\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print("Training time {}".format(total_time_str))
示例#15
0
def main():
    global timeout_sent

    args = parse_arguments()

    random.seed(args.seed + args.local_rank)
    np.random.seed(args.seed + args.local_rank)
    torch.manual_seed(args.seed + args.local_rank)
    torch.cuda.manual_seed(args.seed + args.local_rank)
    worker_init = WorkerInitObj(args.seed + args.local_rank)

    device, args = setup_training(args)

    if is_main_process():
        dllogger.log(step="PARAMETER", data={"Config": [str(args)]})

    # Prepare optimizer
    model, optimizer, lr_scheduler, checkpoint, global_step, criterion = prepare_model_and_optimizer(args, device)

    if is_main_process():
        dllogger.log(step="PARAMETER", data={"SEED": args.seed})

    raw_train_start = None
    if is_main_process():
        dllogger.log(step="PARAMETER", data={"train_start": True})
        dllogger.log(step="PARAMETER", data={"batch_size_per_gpu": args.train_batch_size})
        dllogger.log(step="PARAMETER", data={"learning_rate": args.learning_rate})

    most_recent_ckpts_paths = []
    average_loss = 0.0  # averaged loss every args.log_freq steps
    epoch = 0
    training_steps = 0
    test_losses = []

    pool = ProcessPoolExecutor(1)

    # Note: We loop infinitely over epochs, termination is handled via iteration count
    while True:
        thread = None
        restored_data_loader = None
        if not args.resume_from_checkpoint or epoch > 0 or (args.phase2 and global_step < 1) or args.init_checkpoint:
            files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
                    os.path.isfile(os.path.join(args.input_dir, f)) and 'training' in f]
            files.sort()
            num_files = len(files)
            random.Random(args.seed + epoch).shuffle(files)
            f_start_id = 0
        else:
            f_start_id = checkpoint['files'][0]
            files = checkpoint['files'][1:]
            args.resume_from_checkpoint = False
            num_files = len(files)
            # may not exist in all checkpoints
            epoch = checkpoint.get('epoch', 0)
            restored_dataloader = checkpoint.get('data_loader', None)

        shared_file_list = {}

        if torch.distributed.is_initialized() and get_world_size() > num_files:
            remainder = get_world_size() % num_files
            data_file = files[(f_start_id*get_world_size()+get_rank() + remainder*f_start_id)%num_files]
        else:
            data_file = files[(f_start_id*get_world_size()+get_rank())%num_files]

        previous_file = data_file

        if restored_data_loader is None:
            train_data = pretraining_dataset(data_file, args.max_predictions_per_seq)
            train_sampler = RandomSampler(train_data)
            train_dataloader = DataLoader(train_data, sampler=train_sampler,
                                        batch_size=args.train_batch_size * args.n_gpu,
                                        num_workers=4, worker_init_fn=worker_init,
                                        pin_memory=True)
            # shared_file_list["0"] = (train_dataloader, data_file)
        else:
            train_dataloader = restored_data_loader
            restored_data_loader = None

        overflow_buf = None
        if args.allreduce_post_accumulation:
            overflow_buf = torch.cuda.IntTensor([0])

        for f_id in range(f_start_id + 1 , len(files)):
            if get_world_size() > num_files:
                data_file = files[(f_id*get_world_size()+get_rank() + remainder*f_id)%num_files]
            else:
                data_file = files[(f_id*get_world_size()+get_rank())%num_files]

            previous_file = data_file

            dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init)

            train_iter = tqdm(train_dataloader, desc="Iteration", disable=args.disable_progress_bar) if is_main_process() else train_dataloader

            if raw_train_start is None:
                raw_train_start = time.time()

            for step, batch in enumerate(train_iter):
                training_steps += 1
                batch = [t.to(device) for t in batch]
                input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
                if args.do_train:
                    from smdistributed.modelparallel.test.torch.utils import verify, dump_model
                    model.train()
                    if args.smp > 0:
                        loss_mbs = smp_step(args, device, input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels, model, optimizer, criterion, step)
                        loss = loss_mbs.reduce_mean()
                        if smp.rank() == 0:
                            print("Loss:", loss.item())
                    else:
                        loss = train_step(args, device, input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels, model, optimizer, criterion, step)
                    divisor=1
                    average_loss += loss.item()

                    if training_steps % args.gradient_accumulation_steps == 0:
                        lr_scheduler.step()  # learning rate warmup
                        global_step = take_optimizer_step(args, optimizer, model, overflow_buf, global_step)

                    if global_step >= args.steps_this_run or timeout_sent:
                        train_time_raw = time.time() - raw_train_start
                        last_num_steps = int(training_steps / args.gradient_accumulation_steps) % args.log_freq
                        last_num_steps = args.log_freq if last_num_steps == 0 else last_num_steps
                        average_loss = torch.tensor(average_loss, dtype=torch.float32).cuda()
                        average_loss = average_loss / (last_num_steps * divisor)
                        if (torch.distributed.is_initialized()):
                            average_loss /= get_world_size()
                            torch.distributed.all_reduce(average_loss)
                        final_loss = loss.item()
                        if is_main_process():
                            dllogger.log(step=(epoch, global_step, ), data={"final_loss": final_loss})
                    elif training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
                        if is_main_process():
                            dllogger.log(step=(epoch, global_step, ), data={"average_loss": average_loss / (args.log_freq * divisor),
                                                                            "step_loss": loss.item() * args.gradient_accumulation_steps / divisor,
                                                                            "learning_rate": optimizer.param_groups[0]['lr']})
                        average_loss = 0


                    if global_step >= args.steps_this_run or training_steps % (
                            args.num_steps_per_checkpoint * args.gradient_accumulation_steps) == 0 or timeout_sent:
                        if smp.dp_rank() == 0 and not args.skip_checkpoint:
                            # Save a trained model
                            dllogger.log(step="PARAMETER", data={"checkpoint_step": global_step})
                            # model_to_save = model.module if hasattr(model,
                            #                                         'module') else model  # Only save the model it-self
                            if args.resume_step < 0 or not args.phase2:
                                output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step))
                            else:
                                output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step + args.phase1_end_step))
                            if args.do_train:
                                save_dict = {
                                            'model': model.local_state_dict(),
                                            'optimizer': optimizer.local_state_dict(),
                                            'files': [f_id] + files,
                                            'epoch': epoch,
                                            'data_loader': None if global_step >= args.steps_this_run else train_dataloader}
                                if args.fp16:
                                    save_dict['master params'] = list(amp.master_params(optimizer))
                                # SMP: Checkpoint mp_rank specific state
                                smp.save(save_dict, output_save_file, partial=True)

                                most_recent_ckpts_paths.append(output_save_file)
                                if len(most_recent_ckpts_paths) > 3 and (args.smp == 0 or smp.dp_rank() == 0):
                                    ckpt_to_be_removed = most_recent_ckpts_paths.pop(0)
                                    os.remove(ckpt_to_be_removed+f"_{smp.mp_rank()}")

                        # Exiting the training due to hitting max steps, or being sent a
                        # timeout from the cluster scheduler
                        if global_step >= args.steps_this_run or timeout_sent:
                            del train_dataloader
                            # thread.join()
                            if smp.dp_rank() == 0 and args.save_full:
                                output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step))
                                save_dict = {
                                            'model': model.local_state_dict(),
                                            'optimizer': optimizer.local_state_dict(),
                                            'files': [f_id] + files,
                                            'epoch': epoch,
                                            'data_loader': None if global_step >= args.steps_this_run else train_dataloader}
                                if args.fp16:
                                    save_dict['master params'] = list(amp.master_params(optimizer))
                                # SMP: Save a single checkpoint containing entire model parameters
                                smp.save(save_dict, output_save_file, partial=False)
                            smp.barrier()
                            return args, final_loss, train_time_raw, global_step
                else:
                    model.eval()
                    with torch.no_grad():
                        loss = test_step(args, device, input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels, model, criterion, step)
                        print(f"global_step {global_step} Test Loss:", loss)
                        test_losses.append(loss)
                    global_step += 1
                    if global_step >= args.steps_this_run:
                        return sum(test_losses) / len(test_losses)

            del train_dataloader
            # thread.join()
            # Make sure pool has finished and switch train_dataloader
            # NOTE: Will block until complete
            train_dataloader, data_file = dataset_future.result(timeout=None)
        epoch += 1
示例#16
0
    parser = argparse.ArgumentParser(description="train")
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument("opts", default=None, nargs=argparse.REMAINDER)
    args = parser.parse_args()

    if config.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group("nccl", init_method="env://")
        synchronize()

    config.merge_from_list(args.opts)
    config.freeze()

    save_dir = os.path.join(config.save_dir, f'train')
    mkdir(save_dir)
    logger = setup_logger("train", save_dir, get_rank())
    logger.info("Running with config:\n{}".format(config))

    arguments = {'iteration': 0}
    device = torch.device(config.device)

    bert_config = BertConfig(type_vocab_size=len(config.boundaries) + 2)
    generator = Generator(bert_config)
    generator = generator.to(device)

    optimizer = AdamW(
        params=generator.parameters(),
        lr=config.solver.lr,
        weight_decay=config.solver.weight_decay,
        betas=config.solver.betas
    )
示例#17
0
def main(args):
    utils.init_distributed_mode(args)

    # disable any harsh augmentation in case of Self-supervise training
    if args.training_mode == 'SSL':
        print("NOTE: Smoothing, Mixup, CutMix, and AutoAugment will be disabled in case of Self-supervise training")
        args.smoothing = args.reprob = args.reprob = args.recount = args.mixup = args.cutmix = 0.0
        args.aa = ''

        if args.SiT_LinearEvaluation == 1:
            print("Warning: Linear Evaluation should be set to 0 during SSL training - changing SiT_LinearEvaluation to 0")
            args.SiT_LinearEvaluation = 0
        
    utils.print_args(args)

    device = torch.device(args.device)
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    cudnn.benchmark = True

    print("Loading dataset ....")
    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)   
    dataset_val, _ = build_dataset(is_train=False, args=args)
    

    num_tasks = utils.get_world_size()
    global_rank = utils.get_rank()
    if args.repeated_aug:
        sampler_train = RASampler(dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True)
    else:
        sampler_train = torch.utils.data.DistributedSampler(dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True)
    
    sampler_val = torch.utils.data.SequentialSampler(dataset_val)


    data_loader_train = torch.utils.data.DataLoader(dataset_train, sampler=sampler_train,
        batch_size=args.batch_size, num_workers=args.num_workers,
        pin_memory=args.pin_mem, drop_last=True, collate_fn=collate_fn)

    data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val,
        batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers,
        pin_memory=args.pin_mem, drop_last=False, collate_fn=collate_fn)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    model = create_model(
        args.model, pretrained=False, num_classes=args.nb_classes,
        drop_rate=args.drop, drop_path_rate=args.drop_path, representation_size=args.representation_size,
        drop_block_rate=None, training_mode=args.training_mode)

    if args.finetune:
        checkpoint = torch.load(args.finetune, map_location='cpu')

        checkpoint_model = checkpoint['model']
        state_dict = model.state_dict()
        for k in ['rot_head.weight', 'rot_head.bias', 'contrastive_head.weight', 'contrastive_head.bias']:
            if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]

        # interpolate position embedding
        pos_embed_checkpoint = checkpoint_model['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        new_size = int(num_patches ** 0.5)
        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(
            pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        checkpoint_model['pos_embed'] = new_pos_embed

        model.load_state_dict(checkpoint_model, strict=False)

    model.to(device)

    # Freeze the backbone in case of linear evaluation
    if args.SiT_LinearEvaluation == 1:
        requires_grad(model, False)
        
        model.rot_head.weight.requires_grad = True
        model.rot_head.bias.requires_grad = True
        
        model.contrastive_head.weight.requires_grad = True
        model.contrastive_head.bias.requires_grad = True
        
        if args.representation_size is not None:
            model.pre_logits_rot.fc.weight.requires_grad = True
            model.pre_logits_rot.fc.bias.requires_grad = True
            
            model.pre_logits_contrastive.fc.weight.requires_grad = True
            model.pre_logits_contrastive.fc.bias.requires_grad = True            


    model_ema = None
    if args.model_ema:
        model_ema = ModelEma(model, decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else '', resume='')

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module
        
    n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()

    lr_scheduler, _ = create_scheduler(args, optimizer)

    if args.training_mode == 'SSL':
        criterion = MTL_loss(args.device, args.batch_size)
    elif args.training_mode == 'finetune' and args.mixup > 0.:
        criterion = SoftTargetCrossEntropy()
    else:
        criterion = torch.nn.CrossEntropyLoss()



    output_dir = Path(args.output_dir)
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])

    if args.eval:
        test_stats = evaluate_SSL(data_loader_val, model, device)
        print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
        return

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        if args.training_mode == 'SSL':
            train_stats = train_SSL(
                model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler,
                args.clip_grad, model_ema, mixup_fn)
        else:
            train_stats = train_finetune(
                model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler,
                args.clip_grad, model_ema, mixup_fn)
            
        lr_scheduler.step(epoch)
            
        if epoch%args.validate_every == 0:
            if args.output_dir:
                checkpoint_paths = [output_dir / 'checkpoint.pth']
                for checkpoint_path in checkpoint_paths:
                    utils.save_on_master({
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'model_ema': get_state_dict(model_ema),
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    }, checkpoint_path)
    
            if args.training_mode == 'SSL':
                test_stats = evaluate_SSL(data_loader_val, model, device, epoch, args.output_dir)
            else:
                test_stats = evaluate_finetune(data_loader_val, model, device)

                print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
                max_accuracy = max(max_accuracy, test_stats["acc1"])
                print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                     **{f'test_{k}': v for k, v in test_stats.items()},
                     'epoch': epoch,
                     'n_parameters': n_parameters}

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
示例#18
0
def process_record(data_line_, prediction_line_, neg_gap_, feature_dir_,
                   record_dir_, match_fn, all_doc_scores, all_ans_scores,
                   z_scores):
    missing_count_ = 0
    total_count_ = 0
    stop_count_ = 0
    data = json.loads(data_line_)
    question = data['question']
    q_id = slugify(question)
    q_path = os.path.join(feature_dir_, '%s.json' % q_id)
    n_q = [0 for _ in Tokenizer.FEAT]
    if os.path.exists(q_path):
        q_data = open(q_path, encoding=ENCODING).read()
        record = json.loads(q_data)
        q_ner = record['ner']
        q_pos = record['pos']
        for feat in q_ner + q_pos:
            n_q[Tokenizer.FEAT_DICT[feat]] += 1
    else:
        print('question feature file %s not exist!' % q_path)
        sys.stdout.flush()
        missing_count_ += 1
        return missing_count_, total_count_, stop_count_

    answer = [normalize(a) for a in data['answer']]
    prediction = json.loads(prediction_line_)
    # MAKE SURE REVERSE IS TRUE
    ranked_prediction = sorted(prediction,
                               key=lambda k: k['doc_score'],
                               reverse=True)
    correct_rank = get_rank(prediction, answer, match_fn)
    if correct_rank > 150:
        #  if correct_rank < 50 or correct_rank > 150:
        return missing_count_, total_count_, stop_count_

    all_corr_rank.append(correct_rank - 1)

    all_n_p = []
    all_n_a = []
    all_p_scores = []
    all_a_scores = []
    all_probs = []
    all_spans = []
    repeats = 0
    for i, entry in enumerate(ranked_prediction):
        doc_id = entry['doc_id']
        start = int(entry['start'])
        end = int(entry['end'])
        doc_score = entry['doc_score']
        ans_score = entry['span_score']
        prob = entry['prob']
        span = entry['span']

        #        RESTRICT TO MAX 1000000000
        #        print("Threshold 1000000")
        #        ans_score=min(ans_score, 1000000) #restrict to max of million

        if span in all_spans:
            repeats += 1

        all_spans.append(span)

        ################Calculate sample z score (t statistic) for answer score
        if all_a_scores == [] or len(
                all_a_scores
        ) == 1:  # dont use a_zscore feature at the beginning or if we only have 1
            a_zscore = 0
        else:  # Take the sample mean of the previous ones, take zscore of the current with respect to that
            #            sample_mean = np.mean(all_a_scores + [ans_score])
            sample_mean = np.mean(all_a_scores)
            #            sample_std = np.std(all_a_scores + [ans_score])
            sample_std = np.std(all_a_scores)
            #            if sample_std != 0:
            a_zscore = (ans_score - sample_mean) / sample_std
            #            else:
            #                a_zscore = 0
            z_scores.append(a_zscore)

        # THESE ARE FOR STATISTISTICS OVER ENTIRE DATA SET, IGNORE
        all_doc_scores.append(doc_score)
        all_ans_scores.append(ans_score)

        corr_doc_score = (doc_score - DOC_MEAN) / DOC_STD
        corr_ans_mean_score = (np.mean(all_a_scores + [ans_score]) -
                               ANS_MEAN) / ANS_STD

        all_probs.append(prob)
        ###############

        p_pos = dict()
        p_ner = dict()
        feat_file = os.path.join(feature_dir_, '%s.json' % doc_id)
        if os.path.exists(feat_file):
            record = json.load(open(feat_file))
            p_ner[doc_id] = record['ner']
            p_pos[doc_id] = record['pos']
        n_p = [0 for _ in Tokenizer.FEAT]
        n_a = [0 for _ in Tokenizer.FEAT]
        for feat in p_ner[doc_id] + p_pos[doc_id]:
            n_p[Tokenizer.FEAT_DICT[feat]] += 1

        for feat in p_ner[doc_id][start:end + 1] + p_pos[doc_id][start:end +
                                                                 1]:
            n_a[Tokenizer.FEAT_DICT[feat]] += 1

        all_n_p.append(n_p)
        all_n_a.append(n_a)

        all_p_scores.append(doc_score)
        all_a_scores.append(ans_score)

        f_np = aggregate(all_n_p)
        f_na = aggregate(all_n_a)
        f_sp = aggregate(all_p_scores)
        f_sa = aggregate_ans(all_a_scores)

        record = OrderedDict()

        # sp, nq, np, na, ha
        record['sp'] = f_sp
        record['nq'] = list(map(float, n_q))
        record['np'] = f_np
        record['na'] = f_na
        record['sa'] = f_sa
        record['a_zscore'] = a_zscore
        record['corr_doc_score'] = corr_doc_score
        record['i'] = i
        record['prob_avg'] = sum(all_probs) / len(all_probs)
        record['prob'] = prob
        record['repeats'] = repeats
        record['ans_avg'] = corr_ans_mean_score

        if i + 1 == correct_rank:
            #        if i + 1 >= correct_rank:
            record['stop'] = 1
            stop_count_ += 1

            write_record = True
            #            if i % neg_gap_ ==0:
            #                write_record = True
            #            else:
            #                write_record = False

            should_return = True
        #            if i + 1 - correct_rank > 30:
        #                should_return = True
        #            else:
        #                should_return = False
        else:
            should_return = False
            if i % neg_gap_ == 0:
                record['stop'] = 0
                write_record = True
            else:
                write_record = False
        if write_record:
            record_path = os.path.join(record_dir_,
                                       '%s_%s.pkl' % (q_id, doc_id))
            with open(record_path, 'wb') as f:
                pk.dump(record, f)
            total_count_ += 1
        if should_return:
            return missing_count_, total_count_, stop_count_
    return missing_count_, total_count_, stop_count_
示例#19
0
def main():
    global timeout_sent

    args = parse_arguments()

    random.seed(args.seed + args.local_rank)
    np.random.seed(args.seed + args.local_rank)
    torch.manual_seed(args.seed + args.local_rank)
    torch.cuda.manual_seed(args.seed + args.local_rank)
    worker_init = WorkerInitObj(args.seed + args.local_rank)

    device, args = setup_training(args)
    dllogger.log(step="PARAMETER", data={"Config": [str(args)]})

    # Prepare optimizer
    model, optimizer, lr_scheduler, checkpoint, global_step, criterion = prepare_model_and_optimizer(
        args, device)
    gradient_accumulation_steps = torch.tensor(
        args.gradient_accumulation_steps, dtype=torch.float32).to(device)
    world_size = torch.tensor(get_world_size(), dtype=torch.float32).to(device)

    if is_main_process():
        dllogger.log(step="PARAMETER", data={"SEED": args.seed})

    raw_train_start = None
    if args.do_train:
        if is_main_process():
            dllogger.log(step="PARAMETER", data={"train_start": True})
            dllogger.log(step="PARAMETER",
                         data={"batch_size_per_pu": args.train_batch_size})
            dllogger.log(step="PARAMETER",
                         data={"learning_rate": args.learning_rate})

        model.train()
        most_recent_ckpts_paths = []
        average_loss = 0.0  # averaged loss every args.log_freq steps
        epoch = 0
        training_steps = 0
        model_traced = False

        if device.type == 'cuda':
            pool = ProcessPoolExecutor(1)

        # Note: We loop infinitely over epochs, termination is handled via iteration count
        while True:
            thread = None
            restored_data_loader = None
            if not args.resume_from_checkpoint or epoch > 0 or (
                    args.phase2 and global_step < 1) or args.init_checkpoint:
                files = [
                    os.path.join(args.input_dir, f)
                    for f in os.listdir(args.input_dir)
                    if os.path.isfile(os.path.join(args.input_dir, f))
                    and 'training' in f
                ]
                files.sort()
                num_files = len(files)
                random.Random(args.seed + epoch).shuffle(files)
                f_start_id = 0
            else:
                f_start_id = checkpoint['files'][0]
                files = checkpoint['files'][1:]
                args.resume_from_checkpoint = False
                num_files = len(files)
                # may not exist in all checkpoints
                epoch = checkpoint.get('epoch', 0)
                restored_data_loader = checkpoint.get('data_loader', None)

            shared_file_list = {}

            if torch.distributed.is_initialized(
            ) and get_world_size() > num_files:
                remainder = get_world_size() % num_files
                data_file = files[(f_start_id * get_world_size() + get_rank() +
                                   remainder * f_start_id) % num_files]
            else:
                data_file = files[(f_start_id * get_world_size() + get_rank())
                                  % num_files]

            previous_file = data_file

            if restored_data_loader is None:
                use_pin_memory = False if args.no_cuda or args.use_habana else True
                num_workers = 0 if args.use_habana else 4
                train_data = pretraining_dataset(data_file,
                                                 args.max_predictions_per_seq)
                train_sampler = RandomSampler(train_data)
                train_dataloader = DataLoader(
                    train_data,
                    sampler=train_sampler,
                    batch_size=args.train_batch_size * args.n_pu,
                    num_workers=num_workers,
                    worker_init_fn=worker_init,
                    pin_memory=use_pin_memory,
                    drop_last=True)
                # shared_file_list["0"] = (train_dataloader, data_file)
            else:
                train_dataloader = restored_data_loader
                restored_data_loader = None

            overflow_buf = None
            if args.allreduce_post_accumulation:
                overflow_buf = torch.cuda.IntTensor([0])

            for f_id in range(f_start_id + 1, len(files)):

                if get_world_size() > num_files:
                    data_file = files[(f_id * get_world_size() + get_rank() +
                                       remainder * f_id) % num_files]
                else:
                    data_file = files[(f_id * get_world_size() + get_rank()) %
                                      num_files]

                previous_file = data_file

                if device.type == 'cuda':
                    dataset_future = pool.submit(create_pretraining_dataset,
                                                 data_file,
                                                 args.max_predictions_per_seq,
                                                 shared_file_list, args,
                                                 worker_init)

                train_iter = tqdm(train_dataloader,
                                  desc="Iteration",
                                  disable=args.disable_progress_bar
                                  ) if is_main_process() else train_dataloader

                if raw_train_start is None:
                    raw_train_start = time.time()
                for step, batch in enumerate(train_iter):

                    training_steps += 1
                    position_ids = compute_position_ids(batch[0])
                    if torch.distributed.is_initialized():
                        torch.distributed.barrier()
                    if args.use_habana:
                        batch = [t.to(dtype=torch.int32) for t in batch]
                        position_ids = position_ids.to(dtype=torch.int32)

                    position_ids = position_ids.to(device)
                    batch = [t.to(device) for t in batch]
                    input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch

                    if args.use_jit_trace:
                        if model_traced == False:
                            model = torch.jit.trace(model,
                                                    (input_ids, segment_ids,
                                                     input_mask, position_ids),
                                                    check_trace=False)
                            model_traced = True
                            if args.local_rank != -1 and not args.allreduce_post_accumulation:
                                if args.use_habana:
                                    model = DDP(model)
                                else:
                                    model = DDP(model,
                                                message_size=250000000,
                                                gradient_predivide_factor=
                                                get_world_size())
                        if args.local_rank != -1 and not args.allreduce_post_accumulation \
                                and (training_steps % args.gradient_accumulation_steps != 0):
                            with model.no_sync():
                                prediction_scores, seq_relationship_score = model(
                                    input_ids, segment_ids, input_mask,
                                    position_ids)
                        else:
                            prediction_scores, seq_relationship_score = model(
                                input_ids, segment_ids, input_mask,
                                position_ids)
                    else:
                        if args.local_rank != -1 and not args.allreduce_post_accumulation \
                                and (training_steps % args.gradient_accumulation_steps != 0):
                            with model.no_sync():
                                prediction_scores, seq_relationship_score = model(
                                    input_ids=input_ids,
                                    token_type_ids=segment_ids,
                                    attention_mask=input_mask,
                                    position_ids=position_ids)
                        else:
                            prediction_scores, seq_relationship_score = model(
                                input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask,
                                position_ids=position_ids)

                    loss = criterion(prediction_scores, seq_relationship_score,
                                     masked_lm_labels, next_sentence_labels)
                    if args.n_pu > 1:
                        loss = loss.mean()  # mean() to average on multi-pu.

                    divisor = args.gradient_accumulation_steps
                    if args.gradient_accumulation_steps > 1:
                        if not args.allreduce_post_accumulation:
                            # this division was merged into predivision
                            loss = loss / gradient_accumulation_steps
                            divisor = 1.0
                    if args.fp16:
                        with amp.scale_loss(
                                loss,
                                optimizer,
                                delay_overflow_check=args.
                                allreduce_post_accumulation) as scaled_loss:
                            scaled_loss.backward()
                    else:
                        loss.backward()
                    average_loss += loss.item()

                    if training_steps % args.gradient_accumulation_steps == 0:
                        lr_scheduler.step()  # learning rate warmup
                        global_step = take_optimizer_step(
                            args, optimizer, model, overflow_buf, global_step)

                    if global_step >= args.steps_this_run or timeout_sent:
                        train_time_raw = time.time() - raw_train_start
                        last_num_steps = int(
                            training_steps /
                            args.gradient_accumulation_steps) % args.log_freq
                        last_num_steps = args.log_freq if last_num_steps == 0 else last_num_steps
                        average_loss = average_loss / (last_num_steps *
                                                       divisor)
                        average_loss = torch.tensor(
                            average_loss, dtype=torch.float32).to(device)
                        if (torch.distributed.is_initialized()):
                            average_loss /= world_size
                            torch.distributed.all_reduce(average_loss)
                        final_loss = average_loss.item()
                        if is_main_process():
                            dllogger.log(step=(
                                epoch,
                                global_step,
                            ),
                                         data={"final_loss": final_loss})
                    elif training_steps % (
                            args.log_freq *
                            args.gradient_accumulation_steps) == 0:
                        if is_main_process():
                            dllogger.log(
                                step=(
                                    epoch,
                                    global_step,
                                ),
                                data={
                                    "average_loss":
                                    average_loss / (args.log_freq * divisor),
                                    "step_loss":
                                    loss.item() *
                                    args.gradient_accumulation_steps / divisor,
                                    "learning_rate":
                                    optimizer.param_groups[0]['lr']
                                })
                        average_loss = 0

                    if global_step >= args.steps_this_run or training_steps % (
                            args.num_steps_per_checkpoint * args.
                            gradient_accumulation_steps) == 0 or timeout_sent:
                        if is_main_process() and not args.skip_checkpoint:
                            # Save a trained model
                            dllogger.log(step="PARAMETER",
                                         data={"checkpoint_step": global_step})
                            model_to_save = model.module if hasattr(
                                model, 'module'
                            ) else model  # Only save the model it-self
                            if args.resume_step < 0 or not args.phase2:
                                output_save_file = os.path.join(
                                    args.output_dir,
                                    "ckpt_{}.pt".format(global_step))
                            else:
                                output_save_file = os.path.join(
                                    args.output_dir,
                                    "ckpt_{}.pt".format(global_step +
                                                        args.phase1_end_step))
                            checkpoint_dict = {}
                            if args.do_train:
                                if args.use_habana:
                                    config = modeling.BertConfig.from_json_file(
                                        args.config_file)

                                    # Padding for divisibility by 8
                                    if config.vocab_size % 8 != 0:
                                        config.vocab_size += 8 - (
                                            config.vocab_size % 8)

                                    model_copy = modeling.BertForPreTraining(
                                        config)
                                    model_copy.load_state_dict(
                                        model_to_save.state_dict())

                                    param_groups_copy = optimizer.state_dict(
                                    )['param_groups']
                                    state_dict_copy = {}
                                    for st_key, st_val in optimizer.state_dict(
                                    )['state'].items():
                                        st_val_copy = {}
                                        for k, v in st_val.items():
                                            if isinstance(v, torch.Tensor):
                                                st_val_copy[k] = v.to('cpu')
                                            else:
                                                st_val_copy[k] = v
                                            state_dict_copy[
                                                st_key] = st_val_copy
                                    optim_dict = {}
                                    optim_dict['state'] = state_dict_copy
                                    optim_dict[
                                        'param_groups'] = param_groups_copy
                                    checkpoint_dict = {
                                        'model':
                                        model_copy.state_dict(),
                                        'optimizer':
                                        optim_dict,
                                        'files': [f_id] + files,
                                        'epoch':
                                        epoch,
                                        'data_loader':
                                        None if global_step >= args.max_steps
                                        else train_dataloader
                                    }
                                elif no_cuda:
                                    checkpoint_dict = {
                                        'model':
                                        model_to_save.state_dict(),
                                        'optimizer':
                                        optimizer.state_dict(),
                                        'files': [f_id] + files,
                                        'epoch':
                                        epoch,
                                        'data_loader':
                                        None if global_step >= args.max_steps
                                        else train_dataloader
                                    }
                                else:
                                    checkpoint_dict = {
                                        'model':
                                        model_to_save.state_dict(),
                                        'optimizer':
                                        optimizer.state_dict(),
                                        'master params':
                                        list(amp.master_params(optimizer)),
                                        'files': [f_id] + files,
                                        'epoch':
                                        epoch,
                                        'data_loader':
                                        None if global_step >= args.max_steps
                                        else train_dataloader
                                    }

                                torch.save(checkpoint_dict, output_save_file)
                                most_recent_ckpts_paths.append(
                                    output_save_file)
                                if len(most_recent_ckpts_paths) > 3:
                                    ckpt_to_be_removed = most_recent_ckpts_paths.pop(
                                        0)
                                    os.remove(ckpt_to_be_removed)

                        # Exiting the training due to hitting max steps, or being sent a
                        # timeout from the cluster scheduler
                        if global_step >= args.steps_this_run or timeout_sent:
                            del train_dataloader
                            # thread.join()
                            return args, final_loss, train_time_raw, global_step

                del train_dataloader
                # thread.join()
                # Make sure pool has finished and switch train_dataloader
                # NOTE: Will block until complete
                if device.type == 'cuda':
                    train_dataloader, data_file = dataset_future.result(
                        timeout=None)
                else:
                    train_dataloader, data_file = create_pretraining_dataset(
                        data_file, args.max_predictions_per_seq,
                        shared_file_list, args, worker_init)

            epoch += 1
示例#20
0
def main():
    global timeout_sent

    args = parse_arguments()
        
    random.seed(args.seed + args.local_rank)
    np.random.seed(args.seed + args.local_rank)
    torch.manual_seed(args.seed + args.local_rank)
    torch.cuda.manual_seed(args.seed + args.local_rank)
    worker_init = WorkerInitObj(args.seed + args.local_rank)

    device, args = setup_training(args)
    dllogger.log(step="PARAMETER", data={"Config": [str(args)]})

    # Prepare optimizer
    model, optimizer, lr_scheduler, checkpoint, global_step, criterion = prepare_model_and_optimizer(args, device)

    if is_main_process():
        dllogger.log(step="PARAMETER", data={"SEED": args.seed})

    raw_train_start = None
    if args.do_train:
        if is_main_process():
            dllogger.log(step="PARAMETER", data={"train_start": True})
            dllogger.log(step="PARAMETER", data={"batch_size_per_gpu": args.train_batch_size})
            dllogger.log(step="PARAMETER", data={"learning_rate": args.learning_rate})

        model.train()
        most_recent_ckpts_paths = []
        average_loss = 0.0  # averaged loss every args.log_freq steps
        ave_mask_acc=0.0
        ave_cgp_acc=0.0
        epoch = 0
        training_steps = 0

        pool = ProcessPoolExecutor(1)

        # Note: We loop infinitely over epochs, termination is handled via iteration count
        while True:
            thread = None
            restored_data_loader = None
            if not args.resume_from_checkpoint or epoch > 0 or (args.phase2 and global_step < 1) or args.init_checkpoint:
                files = [i for i in range(256)]
                files.sort()
                num_files = len(files)
                random.Random(args.seed + epoch).shuffle(files)
                f_start_id = 0
            else:
                f_start_id = checkpoint['files'][0]
                files = checkpoint['files'][1:]
                args.resume_from_checkpoint = False
                num_files = len(files)
                # may not exist in all checkpoints
                epoch = checkpoint.get('epoch', 0)
                restored_dataloader = checkpoint.get('data_loader', None)

            shared_file_list = {}

            if torch.distributed.is_initialized() and get_world_size() > num_files:
                remainder = get_world_size() % num_files
                data_file = files[(f_start_id*get_world_size()+get_rank() + remainder*f_start_id)%num_files]
            else:
                data_file = files[(f_start_id*get_world_size()+get_rank())%num_files]

            previous_file = data_file

            if restored_data_loader is None:
                train_data = PretrainDataset("data/" + args.dataset,rank=data_file)
                train_sampler = RandomSampler(train_data)
                train_dataloader = DataLoaderMasking(train_data, sampler=train_sampler,
                                              batch_size=args.train_batch_size * args.n_gpu,
                                              num_workers=4, worker_init_fn=worker_init,
                                              pin_memory=True)
                # shared_file_list["0"] = (train_dataloader, data_file)
            else:
                train_dataloader = restored_data_loader
                restored_data_loader = None

            overflow_buf = None
            if args.allreduce_post_accumulation:
                overflow_buf = torch.cuda.IntTensor([0])

            for f_id in range(f_start_id + 1 , len(files)):
                
   
                if get_world_size() > num_files:
                    data_file = files[(f_id*get_world_size()+get_rank() + remainder*f_id)%num_files]
                else:
                    data_file = files[(f_id*get_world_size()+get_rank())%num_files]

                previous_file = data_file

                dataset_future = pool.submit(create_pretraining_dataset, data_file, args, worker_init)

                train_iter = tqdm(train_dataloader, desc="Iteration", disable=args.disable_progress_bar) if is_main_process() else train_dataloader

                if raw_train_start is None:
                    raw_train_start = time.time()
                for step, batch in enumerate(train_iter):
                    training_steps += 1
                    batch = batch.to(device)
                    pred_node, pred_graph = model(batch)
                    loss = criterion(pred_node, pred_graph,batch.mask_node_label,batch.ngp_y)
                    if args.n_gpu > 1:
                        loss = loss.mean()  # mean() to average on multi-gpu.

                    divisor = args.gradient_accumulation_steps
                    if args.gradient_accumulation_steps > 1:
                        if not args.allreduce_post_accumulation:
                            # this division was merged into predivision
                            loss = loss / args.gradient_accumulation_steps
                            divisor = 1.0
                    if args.fp16:
                        with amp.scale_loss(loss, optimizer, delay_overflow_check=args.allreduce_post_accumulation) as scaled_loss:
                            scaled_loss.backward()
                    else:
                        loss.backward()
                    average_loss += loss.item()
                    acc_node = compute_accuracy(pred_node, batch.mask_node_label)
                    acc_cgp = compute_accuracy(pred_graph, batch.ngp_y)
                    ave_mask_acc+=acc_node
                    ave_cgp_acc+=acc_cgp

                    if training_steps % args.gradient_accumulation_steps == 0:
                        lr_scheduler.step()  # learning rate warmup
                        global_step = take_optimizer_step(args, optimizer, model, overflow_buf, global_step)

                    if global_step >= args.steps_this_run or timeout_sent:
                        train_time_raw = time.time() - raw_train_start
                        last_num_steps = int(training_steps / args.gradient_accumulation_steps) % args.log_freq
                        last_num_steps = args.log_freq if last_num_steps == 0 else last_num_steps
                        average_loss = torch.tensor(average_loss, dtype=torch.float32).cuda()
                        average_loss = average_loss / (last_num_steps * divisor)

                        ave_mask_acc = torch.tensor(ave_mask_acc, dtype=torch.float32).cuda()
                        ave_mask_acc = ave_mask_acc / (last_num_steps * divisor)
                        ave_cgp_acc = torch.tensor(ave_cgp_acc, dtype=torch.float32).cuda()
                        ave_cgp_acc = ave_cgp_acc / (last_num_steps * divisor)

                        if (torch.distributed.is_initialized()):
                            average_loss /= get_world_size()
                            torch.distributed.all_reduce(average_loss)

                            ave_mask_acc/=get_world_size()
                            torch.distributed.all_reduce(ave_mask_acc)

                            ave_cgp_acc /= get_world_size()
                            torch.distributed.all_reduce(ave_cgp_acc)
                        final_loss = average_loss.item()
                        final_maskacc = ave_mask_acc.item()
                        final_cgpacc = ave_mask_acc.item()

                        if is_main_process():
                            dllogger.log(step=(epoch, global_step, ), data={"final_loss": final_loss,"final_maskacc":final_maskacc,
                                                                            "final_cgpacc":final_cgpacc})
                    elif training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
                        if is_main_process():
                            dllogger.log(step=(epoch, global_step, ), data={"average_loss": average_loss / (args.log_freq * divisor),
                                                                            "average_mask_acc":ave_mask_acc / (args.log_freq * divisor),
                                                                            "average_cgp_acc": ave_cgp_acc / (args.log_freq * divisor),
                                                                            "step_loss": loss.item() * args.gradient_accumulation_steps / divisor,
                                                                            "learning_rate": optimizer.param_groups[0]['lr']})
                        average_loss = 0
                        ave_mask_acc = 0
                        ave_cgp_acc = 0


                    if global_step >= args.steps_this_run or training_steps % (
                            args.num_steps_per_checkpoint * args.gradient_accumulation_steps) == 0 or timeout_sent:
                        if is_main_process() and not args.skip_checkpoint:
                            # Save a trained model
                            dllogger.log(step="PARAMETER", data={"checkpoint_step": global_step})
                            model_to_save = model.module if hasattr(model,
                                                                    'module') else model  # Only save the model it-self
                            if args.resume_step < 0 or not args.phase2:
                                output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step))
                            else:
                                output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step + args.phase1_end_step))
                            if args.do_train:
                                torch.save({'model': model_to_save.state_dict(),
                                            'gnn':model_to_save.gnn.state_dict(),
                                            'linear_atom':model_to_save.linear_pred_atoms.state_dict(),
                                            'optimizer': optimizer.state_dict(),
                                            'master params': list(amp.master_params(optimizer)),
                                            'files': [f_id] + files,
                                            'epoch': epoch,
                                            'data_loader': None if global_step >= args.max_steps else train_dataloader
                                            }, output_save_file)

                                most_recent_ckpts_paths.append(output_save_file)
                                if len(most_recent_ckpts_paths) > 3:
                                    ckpt_to_be_removed = most_recent_ckpts_paths.pop(0)
                                    os.remove(ckpt_to_be_removed)

                        # Exiting the training due to hitting max steps, or being sent a 
                        # timeout from the cluster scheduler
                        if global_step >= args.steps_this_run or timeout_sent:
                            del train_dataloader
                            # thread.join()
                            return args, final_loss, final_maskacc, final_cgpacc, train_time_raw, global_step

                del train_dataloader
                # thread.join()
                # Make sure pool has finished and switch train_dataloader
                # NOTE: Will block until complete
                train_dataloader, data_file = dataset_future.result(timeout=None)

            epoch += 1
示例#21
0
文件: base.py 项目: JarvisLL/ACE
    def training(self):
        self.net.train()
        save_to_disk = ptutil.get_rank() == 0
        start_training_time = time.time()
        trained_time = 0
        mIoU = 0
        best_miou = 0
        tic = time.time()
        end = time.time()
        iteration, max_iter = 0, self.max_iter
        save_iter, eval_iter = self.per_iter * self.config.TRAIN.SAVE_EPOCH, self.per_iter * self.config.TRAIN.EVAL_EPOCHS
        self.logger.info("Start training, total epochs {:3d} = total iteration: {:6d}".format(self.config.TRAIN.EPOCHS, max_iter))
        for i, (image, target) in enumerate(self.train_loader):
            iteration += 1
            self.scheduler.step()
            self.optimizer.zero_grad()
            image, target = image.to(self.device,dtype=self.dtype), target.to(self.device)
            if self.config.DATASET.IMG_TRANSFORM == False:
                image = image.permute(0,3,1,2)
            outputs = self.net(image)
            loss_dict = self.criterion(outputs, target)
            loss_dict_reduced = ptutil.reduce_loss_dict(loss_dict)
            losses_reduced = sum(loss for loss in loss_dict_reduced.values())
            loss = sum(loss for loss in loss_dict.values())
            if self.config.TRAIN.MIXED_PRECISION:
                with amp.scale_loss(loss,self.optimizer) as scale_loss:
                    scale_loss.backward()
            else:
                loss.backward()

            self.optimizer.step()
            trained_time += time.time() - end
            end = time.time()
            if iteration % self.config.TRAIN.LOG_STEP == 0:
                eta_seconds = int((trained_time / iteration) * (max_iter - iteration))
                log_str = ["Iteration {:06d} , Lr: {:.5f}, Cost: {:.2f}s, Eta: {}"
                               .format(iteration, self.optimizer.param_groups[0]['lr'], time.time() - tic,
                                       str(datetime.timedelta(seconds=eta_seconds))),
                           "total_loss: {:.3f}".format(losses_reduced.item())]
                log_str = ', '.join(log_str)
                self.logger.info(log_str)
                tic = time.time()
            if save_to_disk and iteration % save_iter == 0:
                model_path = os.path.join(self.config.TRAIN.SAVE_DIR, "{}_{}_{}_iter_{:06d}.pth"
                                          .format(self.config.MODEL.NAME, self.config.TRAIN.SEG_LOSS, self.config.DATASET.NAME, iteration))
                ptutil.save_model(self.net,model_path,self.logger)
            if self.config.TRAIN.EVAL_EPOCHS > 0 and iteration % eval_iter == 0 and not iteration == max_iter:
                metrics = ptutil.validate(self.net,self.valid_loader,self.metric,self.device,self.config)
                ptutil.synchronize()
                pixAcc, mIoU = ptutil.accumulate_metric(metrics)
                if mIoU !=None and mIoU >= best_miou:
                    best_miou = mIoU
                    model_path = os.path.join(self.config.TRAIN.SAVE_DIR, "{}_{}_{}_best.pth"
                                          .format(self.config.MODEL.NAME, self.config.TRAIN.SEG_LOSS, self.config.DATASET.NAME))
                    ptutil.save_model(self.net,model_path,self.logger)
                if pixAcc is not None:
                    self.logger.info('pixAcc: {:.4f}, mIoU: {:.4f}'.format(pixAcc, mIoU))
                self.net.train()
        if save_to_disk:
            model_path = os.path.join(self.config.TRAIN.SAVE_DIR, "{}_{}_{}_iter_{:06d}.pth"
                                      .format(self.config.MODEL.NAME, self.config.TRAIN.SEG_LOSS, self.config.DATASET.NAME, max_iter))
            ptutil.save_model(self.net,model_path,self.logger)
        total_training_time = int(time.time() - start_training_time)
        total_time_str = str(datetime.timedelta(seconds=total_training_time))
        self.logger.info("Total training time: {} ({:.4f} s / it)".format(total_time_str, total_training_time / max_iter))
        # eval after training
        if not self.config.TRAIN.SKIP_EVAL:
            metrics = ptutil.validate(self.net,self.valid_loader,self.metric,self.device,self.config)
            ptutil.synchronize()
            pixAcc, mIoU = ptutil.accumulate_metric(metrics)
            if pixAcc is not None:
                self.logger.info('After training, pixAcc: {:.4f}, mIoU: {:.4f}'.format(pixAcc, mIoU))
示例#22
0
文件: train.py 项目: JarvisLL/ACE
                        default=None,
                        nargs=argparse.REMAINDER)
    # the parser
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args = parse_args()
    assert args.framework in (
        'ace', 'base', 'distillation',
        'gan'), 'cannot support this framework: {}'.format(args.framework)
    config = get_config(args.framework)
    update_config(config, args)
    assert num_gpus == len(config.GPUS), 'GPUS config error'
    os.environ['CUDA_VISIBLE_DEVICES'] = str(config.GPUS)
    log_dir = os.path.join(config.TRAIN.SAVE_DIR, 'log')
    ptutil.mkdir(log_dir)
    logger = ptutil.setup_logger('TRAIN', log_dir, ptutil.get_rank(),
                                 'log_{}.txt'.format(args.framework), 'w')
    logger.info('Using {} GPUs'.format(len(config.GPUS)))
    logger.info(args)
    logger.info(config)
    trainer = get_framework(args.framework,
                            config=config,
                            args=args,
                            logger=logger)
    trainer.training()
    torch.cuda.empty_cache()
示例#23
0
def main(args):

    utils.init_distributed_mode(args)
    update_config_from_file(args.cfg)

    print(args)
    args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)
    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.repeated_aug:
            sampler_train = RASampler(dataset_train,
                                      num_replicas=num_tasks,
                                      rank=global_rank,
                                      shuffle=True)
        else:
            sampler_train = torch.utils.data.DistributedSampler(
                dataset_train,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=True)
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)
        sampler_train = torch.utils.data.RandomSampler(dataset_train)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  batch_size=int(
                                                      2 * args.batch_size),
                                                  sampler=sampler_val,
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating SuperVisionTransformer")
    print(cfg)
    model = Vision_TransformerSuper(
        img_size=args.input_size,
        patch_size=args.patch_size,
        embed_dim=cfg.SUPERNET.EMBED_DIM,
        depth=cfg.SUPERNET.DEPTH,
        num_heads=cfg.SUPERNET.NUM_HEADS,
        mlp_ratio=cfg.SUPERNET.MLP_RATIO,
        qkv_bias=True,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        gp=args.gp,
        num_classes=args.nb_classes,
        max_relative_position=args.max_relative_position,
        relative_position=args.relative_position,
        change_qkv=args.change_qkv,
        abs_pos=not args.no_abs_pos)

    choices = {
        'num_heads': cfg.SEARCH_SPACE.NUM_HEADS,
        'mlp_ratio': cfg.SEARCH_SPACE.MLP_RATIO,
        'embed_dim': cfg.SEARCH_SPACE.EMBED_DIM,
        'depth': cfg.SEARCH_SPACE.DEPTH
    }

    model.to(device)
    if args.teacher_model:
        teacher_model = create_model(
            args.teacher_model,
            pretrained=True,
            num_classes=args.nb_classes,
        )
        teacher_model.to(device)
        teacher_loss = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        teacher_model = None
        teacher_loss = None

    model_ema = None

    model_without_ddp = model
    if args.distributed:

        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu], find_unused_parameters=True)
        model_without_ddp = model.module

    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()
    lr_scheduler, _ = create_scheduler(args, optimizer)

    # criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    output_dir = Path(args.output_dir)

    if not output_dir.exists():
        output_dir.mkdir(parents=True)
    # save config for later experiments
    with open(output_dir / "config.yaml", 'w') as f:
        f.write(args_text)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema,
                                               checkpoint['model_ema'])

    retrain_config = None
    if args.mode == 'retrain' and "RETRAIN" in cfg:
        retrain_config = {
            'layer_num': cfg.RETRAIN.DEPTH,
            'embed_dim': [cfg.RETRAIN.EMBED_DIM] * cfg.RETRAIN.DEPTH,
            'num_heads': cfg.RETRAIN.NUM_HEADS,
            'mlp_ratio': cfg.RETRAIN.MLP_RATIO
        }
    if args.eval:
        print(retrain_config)
        test_stats = evaluate(data_loader_val,
                              model,
                              device,
                              mode=args.mode,
                              retrain_config=retrain_config)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print("Start training")
    start_time = time.time()
    max_accuracy = 0.0

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        train_stats = train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            args.clip_grad,
            model_ema,
            mixup_fn,
            amp=args.amp,
            teacher_model=teacher_model,
            teach_loss=teacher_loss,
            choices=choices,
            mode=args.mode,
            retrain_config=retrain_config,
        )

        lr_scheduler.step(epoch)
        if args.output_dir:
            checkpoint_paths = [output_dir / 'checkpoint.pth']
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        # 'model_ema': get_state_dict(model_ema),
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    },
                    checkpoint_path)

        test_stats = evaluate(data_loader_val,
                              model,
                              device,
                              amp=args.amp,
                              choices=choices,
                              mode=args.mode,
                              retrain_config=retrain_config)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        max_accuracy = max(max_accuracy, test_stats["acc1"])
        print(f'Max accuracy: {max_accuracy:.2f}%')

        log_stats = {
            **{f'train_{k}': v
               for k, v in train_stats.items()},
            **{f'test_{k}': v
               for k, v in test_stats.items()}, 'epoch': epoch,
            'n_parameters': n_parameters
        }

        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
示例#24
0
文件: train.py 项目: lvcat/LEDNet
    def training(self):
        self.net.train()
        save_to_disk = ptutil.get_rank() == 0
        start_training_time = time.time()
        trained_time = 0
        tic = time.time()
        end = time.time()
        iteration, max_iter = 0, self.args.max_iter
        save_iter, eval_iter = self.args.per_iter * self.args.save_epoch, self.args.per_iter * self.args.eval_epochs
        # save_iter, eval_iter = 10, 10

        logger.info(
            "Start training, total epochs {:3d} = total iteration: {:6d}".
            format(self.args.epochs, max_iter))

        for i, (image, target) in enumerate(self.train_loader):
            iteration += 1
            self.scheduler.step()
            self.optimizer.zero_grad()
            image, target = image.to(self.device), target.to(self.device)
            outputs = self.net(image)
            loss_dict = self.criterion(outputs, target)
            # reduce losses over all GPUs for logging purposes
            loss_dict_reduced = ptutil.reduce_loss_dict(loss_dict)
            losses_reduced = sum(loss for loss in loss_dict_reduced.values())

            loss = sum(loss for loss in loss_dict.values())
            loss.backward()
            self.optimizer.step()
            trained_time += time.time() - end
            end = time.time()
            if iteration % args.log_step == 0:
                eta_seconds = int(
                    (trained_time / iteration) * (max_iter - iteration))
                log_str = [
                    "Iteration {:06d} , Lr: {:.5f}, Cost: {:.2f}s, Eta: {}".
                    format(iteration, self.optimizer.param_groups[0]['lr'],
                           time.time() - tic,
                           str(datetime.timedelta(seconds=eta_seconds))),
                    "total_loss: {:.3f}".format(losses_reduced.item())
                ]
                log_str = ', '.join(log_str)
                logger.info(log_str)
                tic = time.time()
            if save_to_disk and iteration % save_iter == 0:
                model_path = os.path.join(
                    self.args.save_dir,
                    "{}_iter_{:06d}.pth".format('LEDNet', iteration))
                self.save_model(model_path)
            # Do eval when training, to trace the mAP changes and see performance improved whether or nor
            if args.eval_epochs > 0 and iteration % eval_iter == 0 and not iteration == max_iter:
                metrics = self.validate()
                ptutil.synchronize()
                pixAcc, mIoU = ptutil.accumulate_metric(metrics)
                if pixAcc is not None:
                    logger.info('pixAcc: {:.4f}, mIoU: {:.4f}'.format(
                        pixAcc, mIoU))
                self.net.train()
        if save_to_disk:
            model_path = os.path.join(
                self.args.save_dir,
                "{}_iter_{:06d}.pth".format('LEDNet', max_iter))
            self.save_model(model_path)
        # compute training time
        total_training_time = int(time.time() - start_training_time)
        total_time_str = str(datetime.timedelta(seconds=total_training_time))
        logger.info("Total training time: {} ({:.4f} s / it)".format(
            total_time_str, total_training_time / max_iter))
        # eval after training
        if not self.args.skip_eval:
            metrics = self.validate()
            ptutil.synchronize()
            pixAcc, mIoU = ptutil.accumulate_metric(metrics)
            if pixAcc is not None:
                logger.info(
                    'After training, pixAcc: {:.4f}, mIoU: {:.4f}'.format(
                        pixAcc, mIoU))
示例#25
0
            model = self.net
        torch.save(model.state_dict(), model_path)
        logger.info("Saved checkpoint to {}".format(model_path))


if __name__ == '__main__':
    args = parse_args()

    # device setting
    num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1
    args.num_gpus = num_gpus
    if not args.no_cuda and torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True
        args.device = "cuda"
    else:
        args.distributed = False
        args.device = "cpu"
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl", init_method=args.init_method)
    args.lr = args.lr * args.num_gpus  # scale by num gpus

    logger = ptutil.setup_logger('SSD', args.save_dir, ptutil.get_rank(), 'log_yolo3.txt', 'w')
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(args)
    trainer = Trainer(args)

    trainer.training()
    torch.cuda.empty_cache()
示例#26
0
    # init config
    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    distributed = num_gpus > 1
    if distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method=args.init_method)
        ptutil.synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.freeze()

    # logging
    logger = ptutil.setup_logger("RetinaNet", cfg.CONFIG.save_dir,
                                 ptutil.get_rank())
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(cfg)

    model = get_model(cfg.CONFIG.model, pretrained=cfg.TEST.pretrained)
    model.to(cfg.MODEL.device)

    output_dir = cfg.CONFIG.output_dir
    if output_dir:
        output_folder = os.path.join(output_dir, "inference", cfg.DATA.dataset)
        ptutil.mkdir(output_folder)

    # dataset
    data_loader = build_dataloader(cfg, False, distributed)
    inference(model,
              data_loader,
示例#27
0
文件: train.py 项目: lvcat/LEDNet
if __name__ == "__main__":
    args = parse_args()

    # device setting
    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1
    args.num_gpus = num_gpus
    if not args.no_cuda and torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True
        args.device = "cuda"
    else:
        args.distributed = False
        args.device = "cpu"
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method=args.init_method)

    args.lr = args.lr * args.num_gpus  # scale by num gpus

    logger = ptutil.setup_logger('Segmentation', args.save_dir,
                                 ptutil.get_rank(), 'log_seg.txt', 'w')
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(args)
    trainer = Trainer(args)

    trainer.training()
    torch.cuda.empty_cache()
示例#28
0
def batch_predict_test(data_line_,
                       prediction_line_,
                       model,
                       feature_dir_,
                       match_fn_,
                       stop_at=-1):
    data = json.loads(data_line_)
    # question = data['question']
    # q_id = slugify(question)
    # q_path = os.path.join(feature_dir_, '%s.json' % q_id)
    # n_q = [0 for _ in Tokenizer.FEAT]
    # if os.path.exists(q_path):
    #     q_data = open(q_path, encoding=ENCODING).read()
    #     record = json.loads(q_data)
    #     q_ner = record['ner']
    #     q_pos = record['pos']
    #     for feat in q_ner + q_pos:
    #         n_q[Tokenizer.FEAT_DICT[feat]] += 1

    answer = [normalize(a) for a in data['answer']]
    prediction = json.loads(prediction_line_)
    ranked_prediction = sorted(prediction,
                               key=lambda k: k['doc_score'],
                               reverse=True)
    correct_rank = get_rank(ranked_prediction, answer, match_fn_)
    total_count_ = 0
    correct_count_ = 0

    if correct_rank > 150:
        print("BAD")
        return 0, 0, 0, ranked_prediction
    # all_n_p = []
    # all_n_a = []

    all_p_scores = []
    all_a_scores = []
    all_probs = []
    diff = 0
    repeats = 0
    all_spans = []

    es_preds = []
    stop_loc = 0
    for i, entry in enumerate(ranked_prediction):
        es_preds.append(entry)
        # doc_id = entry['doc_id']
        # start = int(entry['start'])
        # end = int(entry['end'])
        doc_score = entry['doc_score']
        ans_score = entry['span_score']
        prob = entry['prob']
        span = entry['span']

        if span in all_spans:
            repeats += 1

        all_spans.append(span)
        all_probs.append(prob)

        #        print("Threshold 1000000")
        #        ans_score=min(ans_score, 1000000) #restrict to max of million

        # p_pos = dict()
        # p_ner = dict()
        # feat_file = os.path.join(feature_dir_, '%s.json' % doc_id)
        # if os.path.exists(feat_file):
        #     record = json.load(open(feat_file))
        #     p_ner[doc_id] = record['ner']
        #     p_pos[doc_id] = record['pos']
        # n_p = [0 for _ in Tokenizer.FEAT]
        # n_a = [0 for _ in Tokenizer.FEAT]
        # for feat in p_ner[doc_id] + p_pos[doc_id]:
        #     n_p[Tokenizer.FEAT_DICT[feat]] += 1
        # for feat in p_ner[doc_id][start:end + 1] + p_pos[doc_id][start:end + 1]:
        #     n_a[Tokenizer.FEAT_DICT[feat]] += 1

        ################Calculate sample z score (t statistic) for answer score
        if all_a_scores == [] or len(
                all_a_scores
        ) == 1:  # dont use a_zscore feature at the beginning
            a_zscore = 0
        else:
            #            sample_mean = numpy.mean(all_a_scores + [ans_score])
            sample_mean = numpy.mean(all_a_scores)
            #            sample_std = numpy.std(all_a_scores + [ans_score])
            sample_std = numpy.std(all_a_scores)
            #            if sample_std != 0:
            a_zscore = (ans_score - sample_mean) / sample_std
        #            else:
        #                a_zscore = 0

        # if a_zscore != 0:
        #     az_norm = (a_zscore - Z_MEAN) / Z_STD
        # else:
        #     az_norm = 0

        # a_zscore_norm = torch.FloatTensor(list([az_norm]))  # 1

        corr_doc_score = (doc_score - DOC_MEAN) / DOC_STD
        # ans_avg = (numpy.mean(all_a_scores + [ans_score]) - ANS_MEAN) / ANS_STD
        a_zscore_t = torch.FloatTensor(list([a_zscore]))  # 1
        # ans_avg = torch.FloatTensor(list([ans_avg]))  # 1

        corr_doc_score_t = torch.FloatTensor(list([corr_doc_score]))  # 1

        # prob_avg = sum(all_probs) / len(all_probs)
        # prob_avg = torch.FloatTensor([prob_avg])

        # repeats_t = torch.FloatTensor([repeats])
        ###############

        # all_n_p.append(n_p)
        # all_n_a.append(n_a)

        all_p_scores.append(doc_score)
        all_a_scores.append(ans_score)

        # f_np = aggregate(all_n_p)
        # f_na = aggregate(all_n_a)
        # f_sp = aggregate(all_p_scores)
        # f_sa = aggregate_ans(all_a_scores)

        # sp, nq, np, na, ha
        # sp = torch.FloatTensor(f_sp)  # 4x1
        # sa = torch.FloatTensor(f_sa)  # 2x1

        # i_ft = torch.FloatTensor([i])
        # i_std = (i - I_MEAN) / I_STD
        # i_std = torch.FloatTensor([i_std])

        # OLD ONES NO GOOD
        # np = torch.FloatTensor(list(map(float, n_q)))  # 4x58
        # na = torch.FloatTensor(f_np)  # 4x58
        # nq = torch.FloatTensor(f_na)  # 1x58

        # na = torch.FloatTensor(f_na)  # 4x58
        # np = torch.FloatTensor(f_np)
        # nq = torch.FloatTensor(list(map(float, n_q)))  # 4x58

        # inputs = torch.cat([sp, sa, nq, np, na])
        # Uncomment this one
        #        inputs = torch.cat([sp, nq, np, na, a_zscore_t])
        # inputs = torch.cat([sp, a_zscore_t])
        # inputs = torch.cat([sp, a_zscore_t])

        #        inputs = torch.cat([corr_doc_score_t, a_zscore_t, i_ft])
        inputs = torch.cat([corr_doc_score_t, a_zscore_t])

        prob = model.predict(inputs, prob=True)
        #        print(list(model.network.parameters()))
        if stop_at <= 0:
            print(
                "Prob of STOP = {}, Correct Rank = {}, i = {}, answer_score = {}, REPEATS = {}"
                .format(prob, correct_rank, i, ans_score, repeats))
            #    if prob > 0.5:
            if prob > 0.95:
                if i + 1 >= correct_rank:
                    correct_count_ += 1
                    diff = i + 1 - correct_rank
                    print("stop_at <=0 prob > 0.45 CORRECT")
                print("AVG ANS SCORE {}".format(numpy.mean(all_probs)))

                print("STD ANS SCORE {}".format(numpy.std(all_probs)))
                stop_loc = i + 1
                break
            elif i + 1 >= 40:
                print("AVG ANS SCORE {}".format(numpy.mean(all_probs)))

                print("STD ANS SCORE {}".format(numpy.std(all_probs)))

                if i + 1 >= correct_rank:
                    correct_count_ += 1
                    print("stop_at <=0 prob <= 0.45 CORRECT")
                    diff = i + 1 - correct_rank
                stop_loc = i + 1
                break
        else:
            if i + 1 == stop_at:
                #        if prob > 0.75:
                if i + 1 >= correct_rank:
                    correct_count_ += 1
                    diff = i + 1 - correct_rank
                    print("stop_at > 0, CORRECT")
                stop_loc = i + 1
                break

    print("stop at: ", stop_loc)
    assert stop_loc == len(es_preds)
    total_count_ += 1
    return correct_count_, total_count_, diff, es_preds
示例#29
0
文件: main.py 项目: volgachen/deit
def main(args):
    utils.init_distributed_mode(args)

    print(args)

    if args.distillation_type != 'none' and args.finetune and not args.eval:
        raise NotImplementedError(
            "Finetuning with distillation not yet supported")

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    dataset_val, _ = build_dataset(is_train=False, args=args)

    if True:  # args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        if args.repeated_aug:
            sampler_train = RASampler(dataset_train,
                                      num_replicas=num_tasks,
                                      rank=global_rank,
                                      shuffle=True)
        else:
            sampler_train = torch.utils.data.DistributedSampler(
                dataset_train,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=True)
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print(
                    'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val,
                num_replicas=num_tasks,
                rank=global_rank,
                shuffle=False)
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(dataset_val,
                                                  sampler=sampler_val,
                                                  batch_size=int(
                                                      1.5 * args.batch_size),
                                                  num_workers=args.num_workers,
                                                  pin_memory=args.pin_mem,
                                                  drop_last=False)

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=args.mixup,
                         cutmix_alpha=args.cutmix,
                         cutmix_minmax=args.cutmix_minmax,
                         prob=args.mixup_prob,
                         switch_prob=args.mixup_switch_prob,
                         mode=args.mixup_mode,
                         label_smoothing=args.smoothing,
                         num_classes=args.nb_classes)

    print(f"Creating model: {args.model}")
    model = create_model(
        args.model,
        pretrained=False,
        num_classes=args.nb_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        drop_block_rate=None,
    )

    if args.finetune:
        if args.finetune.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.finetune,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.finetune, map_location='cpu')

        checkpoint_model = checkpoint['model']
        state_dict = model.state_dict()
        for k in [
                'head.weight', 'head.bias', 'head_dist.weight',
                'head_dist.bias'
        ]:
            if k in checkpoint_model and checkpoint_model[
                    k].shape != state_dict[k].shape:
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]

        # interpolate position embedding
        pos_embed_checkpoint = checkpoint_model['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int(
            (pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches**0.5)
        # class_token and dist_token are kept unchanged
        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
        # only the position tokens are interpolated
        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
                                        embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(pos_tokens,
                                                     size=(new_size, new_size),
                                                     mode='bicubic',
                                                     align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        checkpoint_model['pos_embed'] = new_pos_embed

        model.load_state_dict(checkpoint_model, strict=False)

    model.to(device)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume='')

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = sum(p.numel() for p in model.parameters()
                       if p.requires_grad)
    print('number of params:', n_parameters)

    linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size(
    ) / 512.0
    args.lr = linear_scaled_lr
    optimizer = create_optimizer(args, model_without_ddp)
    loss_scaler = NativeScaler()

    lr_scheduler, _ = create_scheduler(args, optimizer)

    criterion = LabelSmoothingCrossEntropy()

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    teacher_model = None
    if args.distillation_type != 'none':
        assert args.teacher_path, 'need to specify teacher-path when using distillation'
        print(f"Creating teacher model: {args.teacher_model}")
        teacher_model = create_model(
            args.teacher_model,
            pretrained=False,
            num_classes=args.nb_classes,
            global_pool='avg',
        )
        if args.teacher_path.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.teacher_path,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.teacher_path, map_location='cpu')
        teacher_model.load_state_dict(checkpoint['model'])
        teacher_model.to(device)
        teacher_model.eval()

    # wrap the criterion in our custom DistillationLoss, which
    # just dispatches to the original criterion if args.distillation_type is 'none'
    criterion = DistillationLoss(criterion, teacher_model,
                                 args.distillation_type,
                                 args.distillation_alpha,
                                 args.distillation_tau)

    output_dir = Path(args.output_dir)
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(args.resume,
                                                            map_location='cpu',
                                                            check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
            if args.model_ema:
                utils._load_checkpoint_for_ema(model_ema,
                                               checkpoint['model_ema'])
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])

    if args.eval:
        test_stats = evaluate(data_loader_val, model, device)
        print(
            f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
        )
        return

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    max_accuracy = 0.0
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)

        train_stats = train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            args.clip_grad,
            model_ema,
            mixup_fn,
            set_training_mode=args.finetune ==
            ''  # keep in eval mode during finetuning
        )

        lr_scheduler.step(epoch)
        if args.output_dir:
            checkpoint_paths = [output_dir / ('checkpoint_%04d.pth' % (epoch))]
            for checkpoint_path in checkpoint_paths:
                utils.save_on_master(
                    {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'model_ema': get_state_dict(model_ema),
                        'scaler': loss_scaler.state_dict(),
                        'args': args,
                    }, checkpoint_path)

        if not args.train_without_eval:
            test_stats = evaluate(data_loader_val, model, device)
            print(
                f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
            )
            max_accuracy = max(max_accuracy, test_stats["acc1"])
            print(f'Max accuracy: {max_accuracy:.2f}%')

            log_stats = {
                **{f'train_{k}': v
                   for k, v in train_stats.items()},
                **{f'test_{k}': v
                   for k, v in test_stats.items()}, 'epoch': epoch,
                'n_parameters': n_parameters
            }
        else:
            log_stats = {
                **{f'train_{k}': v
                   for k, v in train_stats.items()}, 'epoch': epoch,
                'n_parameters': n_parameters
            }
        if args.output_dir and utils.is_main_process():
            with (output_dir / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
def main():
    global timeout_sent

    args = parse_arguments()

    random.seed(args.seed + args.local_rank)
    np.random.seed(args.seed + args.local_rank)
    torch.manual_seed(args.seed + args.local_rank)
    torch.cuda.manual_seed(args.seed + args.local_rank)
    worker_init = WorkerInitObj(args.seed + args.local_rank)

    device, args = setup_training(args)

    # Prepare optimizer
    (
        model,
        optimizer,
        lr_scheduler,
        checkpoint,
        global_step,
        criterion,
    ) = prepare_model_and_optimizer(args, device)

    raw_train_start = None
    most_recent_ckpts_paths = []
    average_loss = 0.0  # averaged loss every args.log_freq steps
    epoch = 0
    training_steps = 0
    test_losses = []

    pool = ProcessPoolExecutor(1)

    # Note: We loop infinitely over epochs, termination is handled via iteration count
    while True:
        thread = None
        restored_data_loader = None
        if (not args.resume_from_checkpoint or epoch > 0
                or (args.phase2 and global_step < 1) or args.init_checkpoint):
            files = [
                os.path.join(args.input_dir, f)
                for f in os.listdir(args.input_dir)
                if os.path.isfile(os.path.join(args.input_dir, f))
                and "training" in f
            ]
            files.sort()
            num_files = len(files)
            random.Random(args.seed + epoch).shuffle(files)
            f_start_id = 0
        else:
            f_start_id = checkpoint["files"][0]
            files = checkpoint["files"][1:]
            args.resume_from_checkpoint = False
            num_files = len(files)
            # may not exist in all checkpoints
            epoch = checkpoint.get("epoch", 0)
            restored_dataloader = checkpoint.get("data_loader", None)

        shared_file_list = {}

        if smp.is_initialized():
            dpsize = smp.dp_size()
            dprank = smp.dp_rank()
        elif torch.distributed.is_initialized():
            dpsize = get_world_size()
            dprank = get_rank()
        else:
            dpsize = 1
            dprank = 0
        dparallel = dpsize > 1
        if dparallel and dpsize > num_files:
            remainder = dpsize % num_files
            data_file = files[(f_start_id * dpsize + dprank +
                               remainder * f_start_id) % num_files]
        else:
            data_file = files[(f_start_id * dpsize + dprank) % num_files]

        previous_file = data_file

        if restored_data_loader is None:
            train_data = pretraining_dataset(data_file,
                                             args.max_predictions_per_seq)
            train_sampler = RandomSampler(train_data)
            train_dataloader = DataLoader(
                train_data,
                sampler=train_sampler,
                batch_size=args.train_batch_size * args.n_gpu,
                num_workers=4,
                worker_init_fn=worker_init,
                pin_memory=True,
                drop_last=True,
            )
            # shared_file_list["0"] = (train_dataloader, data_file)
        else:
            train_dataloader = restored_data_loader
            restored_data_loader = None

        overflow_buf = None
        if args.allreduce_post_accumulation:
            overflow_buf = torch.cuda.IntTensor([0])

        for f_id in range(f_start_id + 1, len(files)):
            if get_world_size() > num_files:
                data_file = files[(f_id * get_world_size() + get_rank() +
                                   remainder * f_id) % num_files]
            else:
                data_file = files[(f_id * get_world_size() + get_rank()) %
                                  num_files]

            previous_file = data_file

            dataset_future = pool.submit(
                create_pretraining_dataset,
                data_file,
                args.max_predictions_per_seq,
                shared_file_list,
                args,
                worker_init,
            )

            train_iter = (tqdm(train_dataloader,
                               desc="Iteration",
                               disable=args.disable_progress_bar)
                          if is_main_process() else train_dataloader)

            if raw_train_start is None:
                raw_train_start = time.time()

            for step, batch in enumerate(train_iter):
                training_steps += 1
                batch = [t.to(device) for t in batch]
                input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
                if args.do_train:
                    from smdistributed.modelparallel.test.torch.utils import dump_model, verify

                    model.train()
                    if args.smp > 0:
                        loss_mbs = smp_step(
                            args,
                            device,
                            input_ids,
                            segment_ids,
                            input_mask,
                            masked_lm_labels,
                            next_sentence_labels,
                            model,
                            optimizer,
                            criterion,
                            step,
                        )
                        loss = loss_mbs.reduce_mean()
                        if smp.rank() == 0:
                            print("Loss:", loss.item())
                    else:
                        loss = train_step(
                            args,
                            device,
                            input_ids,
                            segment_ids,
                            input_mask,
                            masked_lm_labels,
                            next_sentence_labels,
                            model,
                            optimizer,
                            criterion,
                            step,
                        )
                    divisor = 1
                    average_loss += loss.item()

                    if training_steps % args.gradient_accumulation_steps == 0:
                        lr_scheduler.step()  # learning rate warmup
                        global_step = take_optimizer_step(
                            args, optimizer, model, overflow_buf, global_step)

                    if global_step >= args.steps_this_run or timeout_sent:
                        train_time_raw = time.time() - raw_train_start
                        last_num_steps = (int(
                            training_steps / args.gradient_accumulation_steps)
                                          % args.log_freq)
                        last_num_steps = args.log_freq if last_num_steps == 0 else last_num_steps
                        average_loss = torch.tensor(
                            average_loss, dtype=torch.float32).cuda()
                        average_loss = average_loss / (last_num_steps *
                                                       divisor)
                        if torch.distributed.is_initialized():
                            average_loss /= get_world_size()
                            torch.distributed.all_reduce(average_loss)
                        final_loss = loss.item()
                    elif training_steps % (
                            args.log_freq *
                            args.gradient_accumulation_steps) == 0:
                        average_loss = 0

                    if (global_step >= args.steps_this_run or training_steps %
                        (args.num_steps_per_checkpoint *
                         args.gradient_accumulation_steps) == 0
                            or timeout_sent):
                        if smp.dp_rank() == 0 and not args.skip_checkpoint:
                            if args.resume_step < 0 or not args.phase2:
                                output_save_file = os.path.join(
                                    args.output_dir,
                                    "ckpt_{}.pt".format(global_step))
                            else:
                                output_save_file = os.path.join(
                                    args.output_dir,
                                    "ckpt_{}.pt".format(global_step +
                                                        args.phase1_end_step),
                                )
                            if args.do_train:
                                save_dict = {
                                    "model":
                                    model.local_state_dict(),
                                    "optimizer":
                                    optimizer.local_state_dict(),
                                    "files": [f_id] + files,
                                    "epoch":
                                    epoch,
                                    "data_loader":
                                    None if global_step >= args.steps_this_run
                                    else train_dataloader,
                                }
                                if args.fp16:
                                    save_dict["master params"] = list(
                                        amp.master_params(optimizer))
                                # SMP: Checkpoint mp_rank specific state
                                smp.save(save_dict,
                                         output_save_file,
                                         partial=True)

                                most_recent_ckpts_paths.append(
                                    output_save_file)
                                if len(most_recent_ckpts_paths) > 3 and (
                                        args.smp == 0 or smp.dp_rank() == 0):
                                    ckpt_to_be_removed = most_recent_ckpts_paths.pop(
                                        0)
                                    os.remove(ckpt_to_be_removed +
                                              f"_{smp.mp_rank()}")

                        # Exiting the training due to hitting max steps, or being sent a
                        # timeout from the cluster scheduler
                        if global_step >= args.steps_this_run or timeout_sent:
                            del train_dataloader
                            # thread.join()
                            if smp.dp_rank() == 0 and args.save_full:
                                output_save_file = os.path.join(
                                    args.output_dir,
                                    "ckpt_{}.pt".format(global_step))
                                save_dict = {
                                    "model":
                                    model.local_state_dict(),
                                    "optimizer":
                                    optimizer.local_state_dict(),
                                    "files": [f_id] + files,
                                    "epoch":
                                    epoch,
                                    "data_loader":
                                    None if global_step >= args.steps_this_run
                                    else train_dataloader,
                                }
                                if args.fp16:
                                    save_dict["master params"] = list(
                                        amp.master_params(optimizer))
                                # SMP: Save a single checkpoint containing entire model parameters
                                smp.save(save_dict,
                                         output_save_file,
                                         partial=False)
                            smp.barrier()
                            if smp.local_rank() == 0:
                                print(f"Start syncing model checkpoints to s3")
                                base_s3_path = os.path.dirname(
                                    os.path.dirname(
                                        os.getenv("SM_MODULE_DIR", "")))
                                curr_host = os.getenv("SM_CURRENT_HOST")
                                full_s3_path = f"{base_s3_path}/checkpoints/{curr_host}/"
                                sync_local_checkpoints_to_s3(
                                    local_path=args.output_dir,
                                    s3_path=full_s3_path)
                                print(
                                    f"Finished syncing model checkpoints to s3"
                                )
                            return args, final_loss, train_time_raw, global_step
                else:
                    model.eval()
                    with torch.no_grad():
                        loss = test_step(
                            args,
                            device,
                            input_ids,
                            segment_ids,
                            input_mask,
                            masked_lm_labels,
                            next_sentence_labels,
                            model,
                            criterion,
                            step,
                        )
                        print(f"global_step {global_step} Test Loss:", loss)
                        test_losses.append(loss)
                    global_step += 1
                    if global_step >= args.steps_this_run:
                        return sum(test_losses) / len(test_losses)

            del train_dataloader
            # thread.join()
            # Make sure pool has finished and switch train_dataloader
            # NOTE: Will block until complete
            train_dataloader, data_file = dataset_future.result(timeout=None)
        epoch += 1