help="add a GRU to the model to handle text input")

    args = parser.parse_args()

    args.mem = args.recurrence > 1

    # Set run dir

    date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")

    model_name = args.model
    model_dir = utils.get_model_dir(model_name)

    # Load loggers and Tensorboard writer

    txt_logger = utils.get_txt_logger(model_dir)
    csv_file, csv_logger = utils.get_csv_logger(model_dir)
    tb_writer = tensorboardX.SummaryWriter(model_dir)

    # Log command and all script arguments

    txt_logger.info("{}\n".format(" ".join(sys.argv)))
    txt_logger.info("{}\n".format(args))

    # Set seed for all randomness sources

    utils.seed(args.seed)

    # Set device

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
示例#2
0
pretrained_model_dir = None

if args.pretrained_gnn:
    assert(args.progression_mode == "full")
    default_dir = f"symbol-storage/{args.gnn}-dumb_ac_{args.ltl_sampler}_Simple-LTL-Env-v0_seed:{args.seed}_*_prog:{args.progression_mode}/train"
    print(default_dir)
    model_dirs = glob.glob(default_dir)
    if len(model_dirs) == 0:
        raise Exception("Pretraining directory not found.")
    elif len(model_dirs) > 1:
        raise Exception("More than 1 candidate pretraining directory found.")

    pretrained_model_dir = model_dirs[0]
# Load loggers and Tensorboard writer

txt_logger = utils.get_txt_logger(model_dir + "/train")
csv_file, csv_logger = utils.get_csv_logger(model_dir + "/train")
tb_writer = tensorboardX.SummaryWriter(model_dir + "/train")
utils.save_config(model_dir + "/train", args)

# Log command and all script arguments

txt_logger.info("{}\n".format(" ".join(sys.argv)))
txt_logger.info("{}\n".format(args))

# Set seed for all randomness sources

utils.seed(args.seed)

# Set device
示例#3
0
def main():
    # Parse arguments

    parser = argparse.ArgumentParser()
    args = parser.parse_args()

    ## General parameters
    parser.add_argument("--algo", required=True,
                        help="algorithm to use: a2c | ppo (REQUIRED)")
    parser.add_argument("--env", required=True,
                        help="name of the environment to train on (REQUIRED)")
    parser.add_argument("--model", default=None,
                        help="name of the model (default: {ENV}_{ALGO}_{TIME})")
    parser.add_argument("--seed", type=int, default=1,
                        help="random seed (default: 1)")
    parser.add_argument("--log-interval", type=int, default=1,
                        help="number of updates between two logs (default: 1)")
    parser.add_argument("--save-interval", type=int, default=10,
                        help="number of updates between two saves (default: 10, 0 means no saving)")
    parser.add_argument("--procs", type=int, default=16,
                        help="number of processes (default: 16)")
    parser.add_argument("--frames", type=int, default=10**7,
                        help="number of frames of training (default: 1e7)")

    ## Parameters for main algorithm
    parser.add_argument("--epochs", type=int, default=4,
                        help="number of epochs for PPO (default: 4)")
    parser.add_argument("--batch-size", type=int, default=256,
                        help="batch size for PPO (default: 256)")
    parser.add_argument("--frames-per-proc", type=int, default=None,
                        help="number of frames per process before update (default: 5 for A2C and 128 for PPO)")
    parser.add_argument("--discount", type=float, default=0.99,
                        help="discount factor (default: 0.99)")
    parser.add_argument("--lr", type=float, default=0.001,
                        help="learning rate (default: 0.001)")
    parser.add_argument("--gae-lambda", type=float, default=0.95,
                        help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)")
    parser.add_argument("--entropy-coef", type=float, default=0.01,
                        help="entropy term coefficient (default: 0.01)")
    parser.add_argument("--value-loss-coef", type=float, default=0.5,
                        help="value loss term coefficient (default: 0.5)")
    parser.add_argument("--max-grad-norm", type=float, default=0.5,
                        help="maximum norm of gradient (default: 0.5)")
    parser.add_argument("--optim-eps", type=float, default=1e-8,
                        help="Adam and RMSprop optimizer epsilon (default: 1e-8)")
    parser.add_argument("--optim-alpha", type=float, default=0.99,
                        help="RMSprop optimizer alpha (default: 0.99)")
    parser.add_argument("--clip-eps", type=float, default=0.2,
                        help="clipping epsilon for PPO (default: 0.2)")
    parser.add_argument("--recurrence", type=int, default=1,
                        help="number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory.")
    parser.add_argument("--text", action="store_true", default=False,
                        help="add a GRU to the model to handle text input")
    parser.add_argument("--argmax", action="store_true", default=False,
                        help="select the action with highest probability (default: False)")

    if len(sys.argv) > 1:
        args = parser.parse_args()
    else:
        args.env = 'MiniGrid-DoorKey-5x5-v0'
        args.env = 'MiniGrid-KeyCorridorGBLA-v0'
        args.algo = 'ppo'
        args.seed = 1234
        args.model = 'KeyCorridor2'
        args.frames = 2e5
        args.procs = 16
        args.text = False
        args.frames_per_proc = None
        args.discount = 0.99
        args.lr = 0.001
        args.gae_lambda = 0.95
        args.entropy_coef = 0.01
        args.value_loss_coef = 0.5
        args.max_grad_norm = 0.5
        args.recurrence = 1
        args.optim_eps = 1e-8
        args.optim_alpha = 0.99
        args.clip_eps = 0.2
        args.epochs = 4
        args.batch_size = 256
        args.log_interval = 1
        args.save_interval = 10

        args.argmax = False

    if args.env == 'MiniGrid-KeyCorridorGBLA-v0':
        env_descriptor = [[0,0,0],[0,13,0],[0,0,0]]
        task_descriptor = TaskDescriptor(envD=env_descriptor,
                                         rmDesc=None,
                                         rmOrder=None,
                                         rmSize=4,
                                         observ=True,
                                         seed=None,
                                         time_steps=None)
        env = gym.make('MiniGrid-KeyCorridorGBLA-v0', taskD=task_descriptor)
        goal = GetGoalDescriptor(env)

        goal = goal.refinement[0].refinement[0].refinement[0]

        env = gym_minigrid.wrappers.FullyObsWrapper(env)
        env = gym_minigrid.wrappers.ImgObsWrapper(env)
        env = GoalRL.GoalEnvWrapper(env,goal=goal, verbose=0)

#        env = Monitor(env, 'storage/{}/{}.monitor.csv'.format(rank, goal.goalId))  # wrap the environment in the monitor object
        args.env = env
    else:
        pass


    args.mem = args.recurrence > 1

    # Set run dir

    date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    default_model_name = f"{args.env}_{args.algo}_seed{args.seed}_{date}"

    model_name = args.model or default_model_name
    model_dir = utils.get_model_dir(model_name)

    # Load loggers and Tensorboard writer

    txt_logger = utils.get_txt_logger(model_dir)

    # Log command and all script arguments

    txt_logger.info("{}\n".format(" ".join(sys.argv)))
    txt_logger.info("{}\n".format(args))

    # Set seed for all randomness sources

    utils.seed(args.seed)

    # Set device

    # Load environments

    envs = []
    for i in range(args.procs):
        if type(args.env) == str:
            envs.append(utils.make_env(args.env, args.seed + 10000 * i))
        else:
            envs.append(deepcopy(args.env))
    txt_logger.info("Environments loaded\n")

    # Load training status


    # Load observations preprocessor

    #obs_space, preprocess_obss = utils.get_obss_preprocessor(envs[0].observation_space)

    # Load model

    agent = utils.Agent(env, model_dir, logger=txt_logger,
                        argmax=args.argmax, use_memory=args.mem, use_text=args.text)

    # Load algo
    if args.algo == 'a2c':
        agent.init_training_algo(algo_type=args.algo,
                num_cpu=args.procs,
                frames_per_proc=args.frames_per_proc,
                discount=args.discount,
                lr=args.lr,
                gae_lambda=args.gae_lambda,
                entropy_coef=args.entropy_coef,
                value_loss_coef=args.value_loss_coef,
                max_grad_norm=args.max_grad_norm,
                recurrence=args.recurrence,
                optim_eps=args.optim_eps,

                optim_alpha=args.optim_alpha)   # args for A2C
    elif args.algo == 'ppo':
        agent.init_training_algo(algo_type=args.algo,
                num_cpu=args.procs,
                frames_per_proc=args.frames_per_proc,
                discount=args.discount,
                lr=args.lr,
                gae_lambda=args.gae_lambda,
                entropy_coef=args.entropy_coef,
                value_loss_coef=args.value_loss_coef,
                max_grad_norm=args.max_grad_norm,
                recurrence=args.recurrence,
                optim_eps=args.optim_eps,

                clip_eps=args.clip_eps,         # args for PPO2
                epochs=args.epochs,
                batch_size=args.batch_size)
    else:
        raise ValueError("Incorrect algorithm name: {}".format(args.algo))


    agent.learn(total_timesteps=args.frames,
                log_interval=args.log_interval,
                save_interval=args.save_interval)

    print('training completed!')
示例#4
0
def main():
    # Parse arguments

    parser = argparse.ArgumentParser()

    ## General parameters
    parser.add_argument(
        "--algo",
        required=True,
        help="algorithm to use: a2c | ppo | ppo_intrinsic (REQUIRED)")
    parser.add_argument("--env",
                        required=True,
                        help="name of the environment to train on (REQUIRED)")
    parser.add_argument(
        "--model",
        default=None,
        help="name of the model (default: {ENV}_{ALGO}_{TIME})")
    parser.add_argument("--seed",
                        type=int,
                        default=1,
                        help="random seed (default: 1)")
    parser.add_argument("--log-interval",
                        type=int,
                        default=1,
                        help="number of updates between two logs (default: 1)")
    parser.add_argument(
        "--save-interval",
        type=int,
        default=10,
        help=
        "number of updates between two saves (default: 10, 0 means no saving)")
    parser.add_argument("--procs",
                        type=int,
                        default=16,
                        help="number of processes (default: 16)")
    parser.add_argument("--frames",
                        type=int,
                        default=10**7,
                        help="number of frames of training (default: 1e7)")

    ## Parameters for main algorithm
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="number of epochs for PPO (default: 4)")
    parser.add_argument("--batch-size",
                        type=int,
                        default=256,
                        help="batch size for PPO (default: 256)")
    parser.add_argument(
        "--frames-per-proc",
        type=int,
        default=None,
        help=
        "number of frames per process before update (default: 5 for A2C and 128 for PPO)"
    )
    parser.add_argument("--discount",
                        type=float,
                        default=0.99,
                        help="discount factor (default: 0.99)")
    parser.add_argument("--lr",
                        type=float,
                        default=0.001,
                        help="learning rate (default: 0.001)")
    parser.add_argument(
        "--gae-lambda",
        type=float,
        default=0.95,
        help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)"
    )
    parser.add_argument("--entropy-coef",
                        type=float,
                        default=0.01,
                        help="entropy term coefficient (default: 0.01)")
    parser.add_argument("--value-loss-coef",
                        type=float,
                        default=0.5,
                        help="value loss term coefficient (default: 0.5)")
    parser.add_argument("--max-grad-norm",
                        type=float,
                        default=0.5,
                        help="maximum norm of gradient (default: 0.5)")
    parser.add_argument(
        "--optim-eps",
        type=float,
        default=1e-8,
        help="Adam and RMSprop optimizer epsilon (default: 1e-8)")
    parser.add_argument("--optim-alpha",
                        type=float,
                        default=0.99,
                        help="RMSprop optimizer alpha (default: 0.99)")
    parser.add_argument("--clip-eps",
                        type=float,
                        default=0.2,
                        help="clipping epsilon for PPO (default: 0.2)")
    parser.add_argument(
        "--recurrence",
        type=int,
        default=1,
        help=
        "number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory."
    )
    parser.add_argument("--text",
                        action="store_true",
                        default=False,
                        help="add a GRU to the model to handle text input")
    parser.add_argument("--visualize",
                        default=False,
                        help="show real time CNN layer weight changes")

    args = parser.parse_args()

    args.mem = args.recurrence > 1

    # Set run dir

    date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    default_model_name = f"{args.env}_{args.algo}_seed{args.seed}_{date}"

    model_name = args.model or default_model_name
    model_dir = utils.get_model_dir(model_name)

    # Load loggers and Tensorboard writer

    txt_logger = utils.get_txt_logger(model_dir)
    csv_file, csv_logger = utils.get_csv_logger(model_dir)
    tb_writer = tensorboardX.SummaryWriter(model_dir)

    # Log command and all script arguments

    txt_logger.info("{}\n".format(" ".join(sys.argv)))
    txt_logger.info("{}\n".format(args))

    # Set seed for all randomness sources

    utils.seed(args.seed)

    # Set device

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    txt_logger.info(f"Device: {device}\n")

    # Load environments

    envs = []
    for i in range(args.procs):
        envs.append(utils.make_env(args.env, args.seed + 10000 * i))
    txt_logger.info("Environments loaded\n")

    # Load training status

    try:
        status = utils.get_status(model_dir)
    except OSError:
        status = {"num_frames": 0, "update": 0}
    txt_logger.info("Training status loaded\n")

    # Load observations preprocessor

    obs_space, preprocess_obss = utils.get_obss_preprocessor(
        envs[0].observation_space)
    if "vocab" in status:
        preprocess_obss.vocab.load_vocab(status["vocab"])
    txt_logger.info("Observations preprocessor loaded")

    # Load model

    acmodel = ACModel(obs_space, envs[0].action_space, args.mem, args.text)
    if "model_state" in status:
        acmodel.load_state_dict(status["model_state"])
    acmodel.to(device)
    txt_logger.info("Model loaded\n")
    txt_logger.info("{}\n".format(acmodel))

    # Load algo

    if args.algo == "a2c":
        algo = torch_ac.A2CAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_alpha, args.optim_eps,
                                preprocess_obss)
    elif args.algo == "ppo":
        algo = torch_ac.PPOAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_eps, args.clip_eps, args.epochs,
                                args.batch_size, preprocess_obss)

    elif args.algo == "ppo_intrinsic":
        algo = torch_ac.PPOAlgoIntrinsic(
            envs, acmodel, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps,
            args.epochs, args.batch_size, preprocess_obss)
    elif args.algo == "a2c_intrinsic":
        algo = torch_ac.A2CAlgoIntrinsic(
            envs, acmodel, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_alpha,
            args.optim_eps, preprocess_obss)
    else:
        raise ValueError("Incorrect algorithm name: {}".format(args.algo))

    if "optimizer_state" in status:
        algo.optimizer.load_state_dict(status["optimizer_state"])
    txt_logger.info("Optimizer loaded\n")

    # Train model

    num_frames = status["num_frames"]
    update = status["update"]
    start_time = time.time()

    print_visual = args.visualize
    if print_visual:
        fig, axs = plt.subplots(1, 3)
        fig.suptitle('Convolution Layer Weights Normalized Difference')

    while num_frames < args.frames:

        # Store copies of s_t model params
        old_parameters = {}
        for name, param in acmodel.named_parameters():
            old_parameters[name] = param.detach().numpy().copy()

        # Update model parameters
        update_start_time = time.time()
        exps, logs1 = algo.collect_experiences()
        logs2 = algo.update_parameters(exps)
        logs = {**logs1, **logs2}
        update_end_time = time.time()

        # Store copies of s_t+1 model params
        new_parameters = {}
        for name, param in acmodel.named_parameters():
            new_parameters[name] = param.detach().numpy().copy()

        # Compute L2 Norm of model state differences
        # Print model weight change visualization
        for index in range(len(old_parameters.keys())):
            if index == 0 or index == 2 or index == 4:
                key = list(old_parameters.keys())[index]
                old_weights = old_parameters[key]
                new_weights = new_parameters[key]
                norm_diff = numpy.linalg.norm(new_weights - old_weights)
                diff_matrix = abs(new_weights - old_weights)
                diff_matrix[:, :, 0, 0] = normalize(diff_matrix[:, :, 0, 0],
                                                    norm='max',
                                                    axis=0)
                if print_visual:
                    axs[int(index / 2)].imshow(diff_matrix[:, :, 0, 0],
                                               cmap='Greens',
                                               interpolation='nearest')

        # This allows the plots to update as the model trains
        if print_visual:
            plt.ion()
            plt.show()
            plt.pause(0.001)

        num_frames += logs["num_frames"]
        update += 1

        # Print logs

        if update % args.log_interval == 0:
            fps = logs["num_frames"] / (update_end_time - update_start_time)
            duration = int(time.time() - start_time)
            return_per_episode = utils.synthesize(logs["return_per_episode"])
            rreturn_per_episode = utils.synthesize(
                logs["reshaped_return_per_episode"])
            num_frames_per_episode = utils.synthesize(
                logs["num_frames_per_episode"])

            header = ["update", "frames", "FPS", "duration"]
            data = [update, num_frames, fps, duration]
            header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
            data += rreturn_per_episode.values()
            header += [
                "num_frames_" + key for key in num_frames_per_episode.keys()
            ]
            data += num_frames_per_episode.values()
            header += [
                "entropy", "value", "policy_loss", "value_loss", "grad_norm"
            ]
            data += [
                logs["entropy"], logs["value"], logs["policy_loss"],
                logs["value_loss"], logs["grad_norm"]
            ]

            txt_logger.info(
                "U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}"
                .format(*data))

            header += ["return_" + key for key in return_per_episode.keys()]
            data += return_per_episode.values()

            if status["num_frames"] == 0:
                csv_logger.writerow(header)
            csv_logger.writerow(data)
            csv_file.flush()

            for field, value in zip(header, data):
                tb_writer.add_scalar(field, value, num_frames)

        # Save status

        if args.save_interval > 0 and update % args.save_interval == 0:
            status = {
                "num_frames": num_frames,
                "update": update,
                "model_state": acmodel.state_dict(),
                "optimizer_state": algo.optimizer.state_dict()
            }
            if hasattr(preprocess_obss, "vocab"):
                status["vocab"] = preprocess_obss.vocab.vocab
            utils.save_status(status, model_dir)
            txt_logger.info("Status saved")
def main(raw_args=None):

    # Parse arguments
    parser = argparse.ArgumentParser()

    ## General parameters
    parser.add_argument("--algo",
                        required=True,
                        help="algorithm to use: a2c | ppo | ipo (REQUIRED)")
    parser.add_argument("--domain1",
                        required=True,
                        help="name of the first domain to train on (REQUIRED)")
    parser.add_argument(
        "--domain2",
        required=True,
        help="name of the second domain to train on (REQUIRED)")
    parser.add_argument(
        "--p1",
        required=True,
        type=float,
        help="Proportion of training environments from first domain (REQUIRED)"
    )
    parser.add_argument("--model", required=True, help="name of the model")
    parser.add_argument("--seed",
                        type=int,
                        default=1,
                        help="random seed (default: 1)")
    parser.add_argument("--log-interval",
                        type=int,
                        default=1,
                        help="number of updates between two logs (default: 1)")
    parser.add_argument(
        "--save-interval",
        type=int,
        default=10,
        help=
        "number of updates between two saves (default: 10, 0 means no saving)")
    parser.add_argument("--procs",
                        type=int,
                        default=16,
                        help="number of processes (default: 16)")
    parser.add_argument("--frames",
                        type=int,
                        default=10**7,
                        help="number of frames of training (default: 1e7)")

    ## Parameters for main algorithm
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="number of epochs for PPO (default: 4)")
    parser.add_argument("--batch-size",
                        type=int,
                        default=256,
                        help="batch size for PPO (default: 256)")
    parser.add_argument(
        "--frames-per-proc",
        type=int,
        default=None,
        help=
        "number of frames per process before update (default: 5 for A2C and 128 for PPO)"
    )
    parser.add_argument("--discount",
                        type=float,
                        default=0.99,
                        help="discount factor (default: 0.99)")
    parser.add_argument("--lr",
                        type=float,
                        default=0.001,
                        help="learning rate (default: 0.001)")
    parser.add_argument(
        "--gae-lambda",
        type=float,
        default=0.95,
        help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)"
    )
    parser.add_argument("--entropy-coef",
                        type=float,
                        default=0.01,
                        help="entropy term coefficient (default: 0.01)")
    parser.add_argument("--value-loss-coef",
                        type=float,
                        default=0.5,
                        help="value loss term coefficient (default: 0.5)")
    parser.add_argument("--max-grad-norm",
                        type=float,
                        default=0.5,
                        help="maximum norm of gradient (default: 0.5)")
    parser.add_argument(
        "--optim-eps",
        type=float,
        default=1e-8,
        help="Adam and RMSprop optimizer epsilon (default: 1e-8)")
    parser.add_argument("--optim-alpha",
                        type=float,
                        default=0.99,
                        help="RMSprop optimizer alpha (default: 0.99)")
    parser.add_argument("--clip-eps",
                        type=float,
                        default=0.2,
                        help="clipping epsilon for PPO (default: 0.2)")
    parser.add_argument(
        "--recurrence",
        type=int,
        default=1,
        help=
        "number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory."
    )
    parser.add_argument("--text",
                        action="store_true",
                        default=False,
                        help="add a GRU to the model to handle text input")

    args = parser.parse_args(raw_args)

    args.mem = args.recurrence > 1

    # Check PyTorch version
    if (torch.__version__ != '1.2.0'):
        raise ValueError(
            "PyTorch version must be 1.2.0 (see README). Your version is {}.".
            format(torch.__version__))

    if args.mem:
        raise ValueError("Policies with memory not supported.")

    # Set run dir

    date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    default_model_name = args.model

    model_name = args.model or default_model_name
    model_dir = utils.get_model_dir(model_name)

    # Load loggers and Tensorboard writer

    txt_logger = utils.get_txt_logger(model_dir)
    csv_file, csv_logger = utils.get_csv_logger(model_dir)
    tb_writer = tensorboardX.SummaryWriter(model_dir)

    # Log command and all script arguments

    txt_logger.info("{}\n".format(" ".join(sys.argv)))
    txt_logger.info("{}\n".format(args))

    # Set seed for all randomness sources

    torch.backends.cudnn.deterministic = True
    utils.seed(args.seed)

    # Set device

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    txt_logger.info(f"Device: {device}\n")

    # Load environments from different domains
    domain1 = args.domain1  # e.g., 'MiniGrid-ColoredKeysRed-v0'
    domain2 = args.domain2  # e.g., 'MiniGrid-ColoredKeysYellow-v0'

    p1 = args.p1  # Proportion of environments from domain1

    num_envs_total = args.procs  # Total number of environments
    num_domain1 = math.ceil(
        p1 * num_envs_total)  # Number of environments in domain1
    num_domain2 = num_envs_total - num_domain1  # Number of environments in domain2

    # Environments from domain1
    envs1 = []
    for i in range(num_domain1):
        envs1.append(utils.make_env(domain1, args.seed + 10000 * i))

    # Environments from domain2
    envs2 = []
    for i in range(num_domain2):
        envs2.append(utils.make_env(domain2, args.seed + 10000 * i))

    # All environments
    envs = envs1 + envs2

    txt_logger.info("Environments loaded\n")

    # Load training status

    try:
        status = utils.get_status(model_dir)
    except OSError:
        status = {"num_frames": 0, "update": 0}
    txt_logger.info("Training status loaded\n")

    # Load observations preprocessor

    obs_space, preprocess_obss = utils.get_obss_preprocessor(
        envs[0].observation_space)
    if "vocab" in status:
        preprocess_obss.vocab.load_vocab(status["vocab"])
    txt_logger.info("Observations preprocessor loaded")

    if args.algo == "ipo":
        # Load model for IPO game
        acmodel = ACModel_average(obs_space, envs[0].action_space, args.mem,
                                  args.text)
        if "model_state" in status:
            acmodel.load_state_dict(status["model_state"])
        acmodel.to(device)
        txt_logger.info("Model loaded\n")
        txt_logger.info("{}\n".format(acmodel))

    else:
        # Load model (for standard PPO or A2C)
        acmodel = ACModel(obs_space, envs[0].action_space, args.mem, args.text)
        if "model_state" in status:
            acmodel.load_state_dict(status["model_state"])
        acmodel.to(device)
        txt_logger.info("Model loaded\n")
        txt_logger.info("{}\n".format(acmodel))

    # Load algo

    if args.algo == "a2c":
        algo = torch_ac.A2CAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_alpha, args.optim_eps,
                                preprocess_obss)
        if "optimizer_state" in status:
            algo.optimizer.load_state_dict(status["optimizer_state"])
            txt_logger.info("Optimizer loaded\n")

    elif args.algo == "ppo":
        algo = torch_ac.PPOAlgo(envs, acmodel, device, args.frames_per_proc,
                                args.discount, args.lr, args.gae_lambda,
                                args.entropy_coef, args.value_loss_coef,
                                args.max_grad_norm, args.recurrence,
                                args.optim_eps, args.clip_eps, args.epochs,
                                args.batch_size, preprocess_obss)

        if "optimizer_state" in status:
            algo.optimizer.load_state_dict(status["optimizer_state"])
            txt_logger.info("Optimizer loaded\n")

    elif args.algo == "ipo":
        # One algo per domain. These have different envivonments, but shared acmodel
        algo1 = torch_ac.IPOAlgo(
            envs1, acmodel, 1, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps,
            args.epochs, args.batch_size, preprocess_obss)

        algo2 = torch_ac.IPOAlgo(
            envs2, acmodel, 2, device, args.frames_per_proc, args.discount,
            args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef,
            args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps,
            args.epochs, args.batch_size, preprocess_obss)

        if "optimizer_state1" in status:
            algo1.optimizer.load_state_dict(status["optimizer_state1"])
            txt_logger.info("Optimizer 1 loaded\n")
        if "optimizer_state2" in status:
            algo2.optimizer.load_state_dict(status["optimizer_state2"])
            txt_logger.info("Optimizer 2 loaded\n")

    else:
        raise ValueError("Incorrect algorithm name: {}".format(args.algo))

    # Train model

    num_frames = status["num_frames"]
    update = status["update"]
    start_time = time.time()

    while num_frames < args.frames:
        # Update model parameters

        update_start_time = time.time()

        if args.algo == "ipo":

            # Standard method

            # Collect experiences on first domain
            exps1, logs_exps1 = algo1.collect_experiences()

            # Update params of model corresponding to first domain
            logs_algo1 = algo1.update_parameters(exps1)

            # Collect experiences on second domain
            exps2, logs_exps2 = algo2.collect_experiences()

            # Update params of model corresponding to second domain
            logs_algo2 = algo2.update_parameters(exps2)

            # Update end time
            update_end_time = time.time()

            # Combine logs
            logs_exps = {
                'return_per_episode':
                logs_exps1["return_per_episode"] +
                logs_exps2["return_per_episode"],
                'reshaped_return_per_episode':
                logs_exps1["reshaped_return_per_episode"] +
                logs_exps2["reshaped_return_per_episode"],
                'num_frames_per_episode':
                logs_exps1["num_frames_per_episode"] +
                logs_exps2["num_frames_per_episode"],
                'num_frames':
                logs_exps1["num_frames"] + logs_exps2["num_frames"]
            }

            logs_algo = {
                'entropy':
                (num_domain1 * logs_algo1["entropy"] +
                 num_domain2 * logs_algo2["entropy"]) / num_envs_total,
                'value': (num_domain1 * logs_algo1["value"] +
                          num_domain2 * logs_algo2["value"]) / num_envs_total,
                'policy_loss':
                (num_domain1 * logs_algo1["policy_loss"] +
                 num_domain2 * logs_algo2["policy_loss"]) / num_envs_total,
                'value_loss':
                (num_domain1 * logs_algo1["value_loss"] +
                 num_domain2 * logs_algo2["value_loss"]) / num_envs_total,
                'grad_norm':
                (num_domain1 * logs_algo1["grad_norm"] +
                 num_domain2 * logs_algo2["grad_norm"]) / num_envs_total
            }

            logs = {**logs_exps, **logs_algo}
            num_frames += logs["num_frames"]

        else:
            exps, logs1 = algo.collect_experiences()
            logs2 = algo.update_parameters(exps)
            logs = {**logs1, **logs2}
            update_end_time = time.time()
            num_frames += logs["num_frames"]

        update += 1

        # Print logs

        if update % args.log_interval == 0:
            fps = logs["num_frames"] / (update_end_time - update_start_time)
            duration = int(time.time() - start_time)
            return_per_episode = utils.synthesize(logs["return_per_episode"])
            rreturn_per_episode = utils.synthesize(
                logs["reshaped_return_per_episode"])
            num_frames_per_episode = utils.synthesize(
                logs["num_frames_per_episode"])

            header = ["update", "frames", "FPS", "duration"]
            data = [update, num_frames, fps, duration]
            header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
            data += rreturn_per_episode.values()
            header += [
                "num_frames_" + key for key in num_frames_per_episode.keys()
            ]
            data += num_frames_per_episode.values()
            header += [
                "entropy", "value", "policy_loss", "value_loss", "grad_norm"
            ]
            data += [
                logs["entropy"], logs["value"], logs["policy_loss"],
                logs["value_loss"], logs["grad_norm"]
            ]

            txt_logger.info(
                "U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}"
                .format(*data))

            header += ["return_" + key for key in return_per_episode.keys()]
            data += return_per_episode.values()

            # header += ["debug_last_env_reward"]
            # data += [logs["debug_last_env_reward"]]

            header += ["total_loss"]
            data += [
                logs["policy_loss"] - args.entropy_coef * logs["entropy"] +
                args.value_loss_coef * logs["value_loss"]
            ]

            if status["num_frames"] == 0:
                csv_logger.writerow(header)

            csv_logger.writerow(data)
            csv_file.flush()

            for field, value in zip(header, data):
                tb_writer.add_scalar(field, value, num_frames)

        # Save status

        if args.save_interval > 0 and update % args.save_interval == 0:

            if args.algo == "ipo":
                status = {
                    "num_frames": num_frames,
                    "update": update,
                    "model_state": acmodel.state_dict(),
                    "optimizer_state1": algo1.optimizer.state_dict(),
                    "optimizer_state2": algo2.optimizer.state_dict()
                }
            else:
                status = {
                    "num_frames": num_frames,
                    "update": update,
                    "model_state": acmodel.state_dict(),
                    "optimizer_state": algo.optimizer.state_dict()
                }

            if hasattr(preprocess_obss, "vocab"):
                status["vocab"] = preprocess_obss.vocab.vocab
            utils.save_status(status, model_dir)
            txt_logger.info("Status saved")
def tuner(icm_lr, reward_weighting, normalise_rewards, args):
    import argparse
    import datetime
    import torch
    import torch_ac
    import tensorboardX
    import sys
    import numpy as np
    from model import ACModel
    from .a2c import A2CAlgo

    # from .ppo import PPOAlgo

    frames_to_visualise = 200
    # Parse arguments

    args.mem = args.recurrence > 1

    def make_exploration_heatmap(args, plot_title):
        import numpy as np
        import matplotlib.pyplot as plt

        visitation_counts = np.load(
            f"{args.model}_visitation_counts.npy", allow_pickle=True
        )
        plot_title = str(np.count_nonzero(visitation_counts)) + args.model
        plt.imshow(np.log(visitation_counts))
        plt.colorbar()
        plt.title(plot_title)
        plt.savefig(f"{plot_title}_visitation_counts.png")

    # Set run dir

    date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    default_model_name = f"{args.env}_{args.algo}_seed{args.seed}_{date}"
    model_name = args.model or default_model_name
    model_dir = utils.get_model_dir(model_name)

    # Load loggers and Tensorboard writer

    txt_logger = utils.get_txt_logger(model_dir)
    csv_file, csv_logger = utils.get_csv_logger(model_dir)
    tb_writer = tensorboardX.SummaryWriter(model_dir)

    # Log command and all script arguments

    txt_logger.info("{}\n".format(" ".join(sys.argv)))
    txt_logger.info("{}\n".format(args))

    # Set seed for all randomness sources

    utils.seed(args.seed)

    # Set device

    device = "cpu"  # torch.device("cuda" if torch.cuda.is_available() else "cpu")
    txt_logger.info(f"Device: {device}\n")
    # Load environments

    envs = []

    for i in range(16):
        an_env = utils.make_env(
            args.env, int(args.frames_before_reset), int(args.environment_seed)
        )
        envs.append(an_env)
    txt_logger.info("Environments loaded\n")

    # Load training status

    try:
        status = utils.get_status(model_dir)
    except OSError:
        status = {"num_frames": 0, "update": 0}
    txt_logger.info("Training status loaded\n")

    # Load observations preprocessor

    obs_space, preprocess_obss = utils.get_obss_preprocessor(envs[0].observation_space)
    if "vocab" in status:
        preprocess_obss.vocab.load_vocab(status["vocab"])
    txt_logger.info("Observations preprocessor loaded")

    # Load model

    acmodel = ACModel(obs_space, envs[0].action_space, args.mem, args.text)
    if "model_state" in status:
        acmodel.load_state_dict(status["model_state"])
    acmodel.to(device)
    txt_logger.info("Model loaded\n")
    txt_logger.info("{}\n".format(acmodel))

    # Load algo

    # adapted from impact driven RL
    from .models import AutoencoderWithUncertainty

    autoencoder = AutoencoderWithUncertainty(observation_shape=(7, 7, 3)).to(device)

    autoencoder_opt = torch.optim.Adam(
        autoencoder.parameters(), lr=icm_lr, weight_decay=0
    )
    if args.algo == "a2c":
        algo = A2CAlgo(
            envs,
            acmodel,
            autoencoder,
            autoencoder_opt,
            args.uncertainty,
            args.noisy_tv,
            args.curiosity,
            args.randomise_env,
            args.uncertainty_budget,
            args.environment_seed,
            reward_weighting,
            normalise_rewards,
            args.frames_before_reset,
            device,
            args.frames_per_proc,
            args.discount,
            args.lr,
            args.gae_lambda,
            args.entropy_coef,
            args.value_loss_coef,
            args.max_grad_norm,
            args.recurrence,
            args.optim_alpha,
            args.optim_eps,
            preprocess_obss,
            None,
            args.random_action,
        )
    elif args.algo == "ppo":
        algo = PPOAlgo(
            envs,
            acmodel,
            autoencoder,
            autoencoder_opt,
            args.uncertainty,
            args.noisy_tv,
            args.curiosity,
            args.randomise_env,
            args.uncertainty_budget,
            args.environment_seed,
            reward_weighting,
            normalise_rewards,
            device,
            args.frames_per_proc,
            args.discount,
            args.lr,
            args.gae_lambda,
            args.entropy_coef,
            args.value_loss_coef,
            args.max_grad_norm,
            args.recurrence,
            args.optim_eps,
            args.clip_eps,
            args.epochs,
            args.batch_size,
            preprocess_obss,
        )

    else:
        raise ValueError("Incorrect algorithm name: {}".format(args.algo))

    if "optimizer_state" in status:
        algo.optimizer.load_state_dict(status["optimizer_state"])
    txt_logger.info("Optimizer loaded\n")

    # Train model

    num_frames = status["num_frames"]
    update = status["update"]
    start_time = time.time()

    while num_frames < args.frames:
        # Update model parameters

        update_start_time = time.time()
        exps, logs1 = algo.collect_experiences()
        logs2 = algo.update_parameters(exps)
        logs = {**logs1, **logs2}
        update_end_time = time.time()

        num_frames += logs["num_frames"]
        update += 1

        log_to_wandb(logs, start_time, update_start_time, update_end_time)

        # Print logs

        if update % args.log_interval == 0:
            fps = logs["num_frames"] / (update_end_time - update_start_time)
            duration = int(time.time() - start_time)
            return_per_episode = utils.synthesize(logs["return_per_episode"])
            rreturn_per_episode = utils.synthesize(logs["reshaped_return_per_episode"])
            num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])
            header = ["update", "frames", "FPS", "duration"]
            data = [update, num_frames, fps, duration]
            header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
            data += rreturn_per_episode.values()
            header += ["num_frames_" + key for key in num_frames_per_episode.keys()]
            data += num_frames_per_episode.values()
            header += [
                "intrinsic_rewards",
                "uncertainties",
                "novel_states_visited",
                "entropy",
                "value",
                "policy_loss",
                "value_loss",
                "grad_norm",
            ]
            data += [
                logs["intrinsic_rewards"].mean().item(),
                logs["uncertainties"].mean().item(),
                logs["novel_states_visited"].mean().item(),
                logs["entropy"],
                logs["value"],
                logs["policy_loss"],
                logs["value_loss"],
                logs["grad_norm"],
            ]
            txt_logger.info(
                "U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f}".format(
                    *data
                )
            )
        # Save status
        if args.save_interval > 0 and update % args.save_interval == 0:
            status = {
                "num_frames": num_frames,
                "update": update,
                "model_state": acmodel.state_dict(),
                "optimizer_state": algo.optimizer.state_dict(),
            }
            if hasattr(preprocess_obss, "vocab"):
                status["vocab"] = preprocess_obss.vocab.vocab
            utils.save_status(status, model_dir)
    return