示例#1
0
    def load(self):
        # Data Transformations
        transform = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        # Dataset and Creating Train/Test Split
        train_set = torchvision.datasets.CIFAR10(root='./data',
                                                 train=True,
                                                 download=True,
                                                 transform=transform)
        test_set = torchvision.datasets.CIFAR10(root='./data',
                                                train=False,
                                                download=True,
                                                transform=transform)

        # Dataloader Arguments & Test/Train Dataloaders
        dataloader_args = dict(shuffle=True,
                               batch_size=self.batch_size_cuda,
                               num_workers=self.num_workers,
                               pin_memory=True) if has_cuda() else dict(
                                   shuffle=True,
                                   batch_size=self.batch_size_cpu)

        self.train_loader = torch.utils.data.DataLoader(
            train_set, **dataloader_args)
        self.test_loader = torch.utils.data.DataLoader(test_set,
                                                       **dataloader_args)
示例#2
0
    def load(self):
        # Get Train and Test Data
        train_set, test_set = self._dataset()

        # Dataloader Arguments & Test/Train Dataloaders
        dataloader_args = dict(shuffle=True, batch_size=self.batch_size_cpu)
        if has_cuda():
            dataloader_args.update(batch_size=self.batch_size_cuda,
                                   num_workers=self.num_workers,
                                   pin_memory=True)

        self.train_loader = torch.utils.data.DataLoader(
            train_set, **dataloader_args)
        self.test_loader = torch.utils.data.DataLoader(test_set,
                                                       **dataloader_args)
示例#3
0
import os
import pdb
import sys

import torch.utils.data
from torchvision import datasets, transforms
from utils.has_cuda import *

device = has_cuda()

root_path = "C:/Users/gajanana_ganjigatti/Documents/Gaju_data/Quest/eva4/S12/tiny-imagenet-200/tiny-imagenet-200"
dataloader_args = dict(batch_size=512, num_workers=2,
                       pin_memory=True) if device else dict(batch_size=4)
imagenet_traindir = os.path.join(root_path, 'train')
imagenet_valdir = os.path.join(root_path, 'val')
imagenet_testdir = os.path.join(root_path, 'test')
imagenet_mean, imagenet_std = (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)


def tinyImgNet_dataloader(split='train'):

    if split == 'train':
        data_transform = datasets.ImageFolder(
            imagenet_traindir,
            transform=transforms.Compose([
                transforms.Pad(padding=1, padding_mode="edge"),
                transforms.RandomHorizontalFlip(),
                transforms.RandomRotation(20),
                transforms.RandomCrop(size=(64, 64), padding=4),
                #                 transforms.RandomErasing(scale=(0.16, 0.16), ratio=(1, 1)),
                transforms.ToTensor(),