示例#1
0
def is_img(img_cv, color):
    j = 0
    if len(img_cv) != 0:
        print("---1312--------------")
        for i in range (len(img_cv)):
            im_cv_r = cv2.resize(img_cv[i], (1300, 414))
            gray = cv2.cvtColor(im_cv_r, cv2.COLOR_BGR2GRAY)
            equ = cv2.equalizeHist(gray)
            gaussian = cv2.GaussianBlur(gray, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
            median = cv2.medianBlur(gaussian, 3)
            original_image = median
            original_image_size = original_image.shape[:2]
            image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
            image_data = image_data[np.newaxis, ...]
            data = json.dumps({"signature_name": "serving_default",
                   "instances": image_data.tolist()})
            headers = {"content-type": "application/json"}
            num_classes=65
            json_response = requests.post(
                'http://tf:port/v1/models/yolov3:predict', data=data, headers=headers)
            predictions = json.loads(json_response.text)['predictions']

            pred_sbbox, pred_mbbox, pred_lbbox =predictions[0]['pred_sbbox'],predictions[0]['pred_mbbox'],predictions[0]['pred_lbbox']
            pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
                                        np.reshape(pred_mbbox, (-1, 5 + num_classes)),
                                        np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
            bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3)
            bboxes = utils.nms(bboxes, 0.45, method='nms')
            if np.array(bboxes).shape[0] > 6:
                image = utils.draw_bbox(im_cv_r, bboxes)
                # print(image)
                name = color +'im' + str(i) + '.jpg'
                path = os.path.join("./pre_out/", name)
                cv2.imwrite(path,image)
                print("-------------")
示例#2
0
    def detect_image(self, image):
        if self.model_image_size != (None, None):
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
            boxed_image = image_preporcess(np.copy(image), tuple(reversed(self.model_image_size)))
            image_data = boxed_image

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.shape[0], image.shape[1]]#,#[image.size[1], image.size[0]],
                #K.learning_phase(): 0 # Denne har jeg udkommeret!!!!!!
            })

        #print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        thickness = (image.shape[0] + image.shape[1]) // 600
        fontScale=1
        ObjectsList = []
        
        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            #label = '{}'.format(predicted_class)
            scores = '{:.2f}'.format(score)

            top, left, bottom, right = box
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.shape[0], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.shape[1], np.floor(right + 0.5).astype('int32'))

            mid_h = (bottom-top)/2+top
            mid_v = (right-left)/2+left

            # put object rectangle
            cv2.rectangle(image, (left, top), (right, bottom), self.colors[c], thickness)

            # get text size
            (test_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, thickness/self.text_size, 1)

            # put text rectangle
            cv2.rectangle(image, (left, top), (left + test_width, top - text_height - baseline), self.colors[c], thickness=cv2.FILLED)

            # put text above rectangle
            cv2.putText(image, label, (left, top-2), cv2.FONT_HERSHEY_SIMPLEX, thickness/self.text_size, (0, 0, 0), 1)

            # add everything to list
            ObjectsList.append([top, left, bottom, right, mid_v, mid_h, label, scores])

        return image, ObjectsList
示例#3
0
def object_detect(input_path="./road.jpg", output_path='./demo.jpg'):
    img_size = 608
    num_channels = 3
    # image_path = "./docs/images/sample_computer.jpg"
    image_path = input_path  # 调用图片,示例:"./docs/images/sample_computer.jpg"
    original_image = cv2.imread(image_path)

    # original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)

    image_data = utils.image_preporcess(np.copy(original_image),
                                        [img_size, img_size])  # 图片处理成608*608*3

    # print(image_data.shape)

    plt.imshow(image_data)
    plt.show()

    yolov3_api = "http://localhost:8501/v1/models/yolov3:predict"  # 刚刚产生的接口
    image_data_yolo_list = image_data[np.newaxis, :].tolist()  # 转化为多维数组矩阵

    headers = {"Content-type": "application/json"}
    r = requests.post(yolov3_api,
                      headers=headers,
                      data=json.dumps({
                          "signature_name": "predict",
                          "instances": image_data_yolo_list
                      })).json()  #post请求

    # print('r',r) # 19, 19, 85 = 30685
    # {'error': 'Input to reshape is a tensor with 18411 values, but the requested shape requires a multiple of 30685\n\t [[{{node pred_multi_scale/Reshape_2}}]]'}
    # 18411 的因子 [3, 17, 19, 51, 57, 323, 361, 969, 1083, 6137]

    output = np.array(r['predictions'])
    # print(output.shape)
    #   (63, 19, 19, 85)  reduction factor 注:衰减系数以及步长:32  608/32=19      85 = 80类+1可能性+4个坐标
    #   416 x 416 则为 13*13

    output = np.reshape(
        output,
        (-1, 85
         ))  # 这一步处理成 22743*85的维度(63*19*19 =22743, 85 = 80类+1可能性+4个坐标,根据自己数据集改)
    # print(output.shape)

    original_image_size = original_image.shape[:2]
    bboxes = utils.postprocess_boxes(
        output, original_image_size, img_size,
        0.3)  # 这一步是将所有可能的预测信息提取出来,主要是三类:类别,可能性,坐标值。
    bboxes = utils.nms(bboxes, 0.45,
                       method='nms')  # 这一步是 将刚刚提取出来的信息进行筛选,返回最好的预测值,同样是三类。
    image = utils.draw_bbox(original_image, bboxes)  # 这一步是把结果画到新图上面。
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    image = Image.fromarray(image)
    image.show()
    image.save(output_path)  # 保存图片到本地
示例#4
0
def detect_img(model_result, input_size, fp_src, fp_dst):
    original_image = cv2.imread(fp_src)
    original_image_draw = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
    original_image_size = original_image.shape[:2]
    image_data = utils.image_preporcess(np.copy(original_image),
                                        [input_size, input_size])
    image_data = np.array(image_data).astype(np.float32)
    bboxes = model_result.model_reponse(image_data, original_image_size)
    image = utils.draw_bbox(original_image_draw, bboxes)
    image = Image.fromarray(image)
    image.save(fp_dst)
示例#5
0
def predict(original_image):
    '''

    :param original_image: [H, W, 3]
    :return: (xmin, ymin, xmax, ymax, score, class)
    '''

    image = utils.image_preporcess(np.copy(original_image),
                                   [cfg.TEST.INPUT_SIZE, cfg.TEST.INPUT_SIZE])
    image = image[np.newaxis, ...]
    image_ = np.transpose(image, [0, 3, 1, 2])
    image_ = np.copy(image_, order='C')
    pred = test_job(image_, anchors[0], anchors[1])[0, ...]
    original_image_size = original_image.shape[0:2]
    bboxes = utils.postprocess_boxes(pred, original_image_size,
                                     cfg.TEST.INPUT_SIZE,
                                     cfg.TEST.SCORE_THRESHOLD)
    bboxes = utils.nms(bboxes, cfg.TEST.IOU_THRESHOLD, method='nms')
    return bboxes
示例#6
0
    def __next__(self):
        with tf.device('/cpu:0'):
            batch_image = np.zeros(
                (self.batch_size, self.input_size, self.input_size, 3),
                dtype=np.float32)

            batch_label_sbbox = np.zeros(
                (self.batch_size, self.output_sizes[0], self.output_sizes[0],
                 self.anchor_per_scale, 5 + self.num_classes),
                dtype=np.float32)
            batch_label_mbbox = np.zeros(
                (self.batch_size, self.output_sizes[1], self.output_sizes[1],
                 self.anchor_per_scale, 5 + self.num_classes),
                dtype=np.float32)
            batch_label_lbbox = np.zeros(
                (self.batch_size, self.output_sizes[2], self.output_sizes[2],
                 self.anchor_per_scale, 5 + self.num_classes),
                dtype=np.float32)

            batch_sbboxes = np.zeros(
                (self.batch_size, self.max_bbox_per_scale, 4),
                dtype=np.float32)
            batch_mbboxes = np.zeros(
                (self.batch_size, self.max_bbox_per_scale, 4),
                dtype=np.float32)
            batch_lbboxes = np.zeros(
                (self.batch_size, self.max_bbox_per_scale, 4),
                dtype=np.float32)

            num = 0
            if self.batch_count < self.num_batchs:
                while num < self.batch_size:
                    index = self.batch_count * self.batch_size + num
                    if index >= self.num_samples:
                        index -= self.num_samples
                    bboxes = self.load_label(self.label_path[index])
                    image = self.load_image(self.image_path[index])
                    image, bboxes = utils.image_preporcess(
                        np.copy(image), [self.input_size, self.input_size],
                        np.copy(bboxes))

                    label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = self.preprocess_true_boxes(
                        bboxes)
                    batch_image[num, :, :, :] = image
                    batch_label_sbbox[num, :, :, :, :] = label_sbbox
                    batch_label_mbbox[num, :, :, :, :] = label_mbbox
                    batch_label_lbbox[num, :, :, :, :] = label_lbbox
                    batch_sbboxes[num, :, :] = sbboxes
                    batch_mbboxes[num, :, :] = mbboxes
                    batch_lbboxes[num, :, :] = lbboxes
                    num += 1
                self.batch_count += 1
                batch_smaller_target = batch_label_sbbox, batch_sbboxes
                batch_medium_target = batch_label_mbbox, batch_mbboxes
                batch_larger_target = batch_label_lbbox, batch_lbboxes

                return batch_image, (batch_smaller_target, batch_medium_target,
                                     batch_larger_target)
            else:
                self.batch_count = 0
                raise StopIteration
    def predict(self, img, classes, threshold, output_path):
        t1 = time.time()
        input_size = 608
        num_classes = len(classes)

        original_image = cv2.imread(img)
        original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
        original_image_size = original_image.shape[:2]
        image_data = utils.image_preporcess(np.copy(original_image),
                                            [input_size, input_size])

        images_data = []
        images_data.append(image_data)
        images_data_np = np.array(images_data).astype(np.float32)

        tensor = tf.contrib.util.make_tensor_proto(
            images_data_np, shape=list(images_data_np.shape))  # 单张图片加载

        # image_data = [image_data.tolist()]
        t2 = time.time()
        # print('图片预处理时间:{}'.format(t2-t1))
        url = self.server

        options = [('grpc.max_send_message_length', 512 * 1024 * 1024),
                   ('grpc.max_receive_message_length', 512 * 1024 * 1024)]
        channel = grpc.insecure_channel(url, options=options)

        stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

        r = predict_pb2.PredictRequest()
        r.model_spec.name = self.model
        r.model_spec.signature_name = 'predict'
        r.inputs['input'].CopyFrom(tensor)

        # res = stub.Predict(r, 10.0)
        result_future = stub.Predict.future(r, 10.0)  # 10 secs timeout
        res = result_future.result()

        t3 = time.time()
        # print('GRPC 预测时间:{}'.format(t3-t2))

        arr = tf.make_ndarray(res.outputs['output'])
        # print("arr", arr)
        # print("output shape", arr.shape)

        pred_bbox = np.reshape(arr, (-1, 5 + num_classes))
        bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                         input_size, threshold)
        t4 = time.time()
        # print(']图片 postprocess_boxes 处理时间:{}'.format(t4-t3))
        bboxes = utils.nms(bboxes, 0.45, method='nms')
        t5 = time.time()
        # print('图片 nms 处理时间:{}'.format( t5-t4))
        image = utils.draw_bbox(original_image, bboxes, classes, True)

        t6 = time.time()
        # # print("图片draw_bbox处理时间:", t6-t5)

        # image_np = cv2.cvtColor( image, cv2.COLOR_RGB2BGR )  # 转换一下通道
        # cv2.imwrite(filepath, image_np)
        t7 = time.time()
        # print('图片写出处理时间:{}'.format( t7-t6))
        image = Image.fromarray(image)
        image.show()
        image.save(output_path)  # 保存图片到本地
示例#8
0
]
pb_file = "./yolov3_voc.pb"
input_image_path = "./road.jpg"
num_class = len(classes)
strides = [8, 16, 32]
input_size = (608, 608)
graph = tf.Graph()

# Output shapes expected by the post-processor
output_shapes = [(1, 19, 19, (num_class + 5) * 3),
                 (1, 38, 38, (num_class + 5) * 3),
                 (1, 76, 76, (num_class + 5) * 3)]

image = cv2.imread(input_image_path)
image_size = image.shape[:2]
image_data = np.expand_dims(utils.image_preporcess(image, input_size), 0)
image_data = np.array(image_data, dtype=np.float32, order='C')

return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)

with tf.Session(graph=graph) as sess:
    tf_outputs = sess.run(
        [return_tensors[1], return_tensors[2], return_tensors[3]],
        feed_dict={return_tensors[0]: image_data})

# tf_outputs = [output.reshape(shape) for output, shape in zip(tf_outputs, output_shapes)]
pred_bboxes = [
    utils.decode(tf_outputs[i], anchors[i], strides[i]) for i in range(3)
]
pred_bboxes = np.concatenate(
    [np.reshape(pred_bbox, (-1, 5 + num_class)) for pred_bbox in pred_bboxes],
示例#9
0
def run_processing(video_stream: cv2.VideoCapture):

    return_elements = [
        "input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0",
        "pred_lbbox/concat_2:0"
    ]
    pb_file = "./model/model.pb"
    num_classes = 80
    input_size = 416
    graph = tf.Graph()
    return_tensors = utils.read_pb_return_tensors(graph, pb_file,
                                                  return_elements)

    counter = 0
    classes = utils.read_class_names()
    with tf.Session(graph=graph) as sess:
        while True:
            return_value, frame = video_stream.read()
            if return_value:
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                counter = 0
            else:
                counter += 1
                if counter > 5:
                    return
                else:
                    continue
            preproc_time_start = time.time()
            frame_size = frame.shape[:2]
            image_data = utils.image_preporcess(np.copy(frame),
                                                [input_size, input_size])
            image_data = image_data[np.newaxis, ...]
            prev_time = time.time()
            preproc_time = prev_time - preproc_time_start
            info = "preprocessing time: %.2f ms" % (1000 * preproc_time)
            print(info)

            model_time = time.time()
            pred_sbbox, pred_mbbox, pred_lbbox = sess.run(
                [return_tensors[1], return_tensors[2], return_tensors[3]],
                feed_dict={return_tensors[0]: image_data})
            end_model_time = time.time()
            proc_model_time = end_model_time - model_time
            info = "preprocessing model time: %.2f ms" % (1000 *
                                                          proc_model_time)
            print(info)

            pred_bbox = np.concatenate([
                np.reshape(pred_sbbox, (-1, 5 + num_classes)),
                np.reshape(pred_mbbox, (-1, 5 + num_classes)),
                np.reshape(pred_lbbox, (-1, 5 + num_classes))
            ],
                                       axis=0)

            bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                             0.7)
            bboxes = utils.nms(bboxes, 0.45, method='nms')
            result_image = utils.draw_bbox(frame, bboxes, classes)

            curr_time = time.time()
            exec_time = curr_time - prev_time
            info = "time: %.2f ms" % (1000 * exec_time)
            print(info)
            cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
            result = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)
            cv2.imshow("result", result)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break