@author: user """ from simulation import Simulation, TestSimulation from generator import TrafficGenerator from model import Model, TestModel from memory import Memory from visualization import Visualization from utils import import_train_configuration, set_sumo, set_test_path import matplotlib import matplotlib.pyplot as plt import numpy as np import os #%% if __name__ == "__main__": config = import_train_configuration(config_file="training_settings.ini") sumo_cmd = set_sumo(False, config['sumocfg_file_name'], config['max_steps']) TrafficGen = TrafficGenerator(config['max_steps'], config['n_cars_generated']) model = Model(config['num_layers'], config['width_layers'], config['num_states'], config['num_actions'], config['batch_size'], config['learning_rate']) memory = Memory(config['memory_size_max']) viz = Visualization(config['models_path_name'], dpi=96) sim = Simulation(TrafficGen, model, memory, config['gamma'],
@property def reward_store(self): return self._reward_store @property def cumulative_wait_store(self): return self._cumulative_wait_store @property def avg_queue_length_store(self): return self._avg_queue_length_store if __name__ == "__main__": config = import_train_configuration( config_file='settings/training_settings.ini') sumo_cmd = set_sumo(config['gui'], config['simulation_folder'], config['sumocfg_file_name'], config['max_steps']) path = set_train_path(config['models_path_name']) Model = TrainModel(config['num_layers'], config['width_layers'], config['batch_size'], config['learning_rate'], input_dim=config['num_states'], output_dim=config['num_actions']) Memory = Memory(config['memory_size_max'], config['memory_size_min']) Traffic_Generator = Traffic_Generator(config["flow_file"], config["route_file"],