def get_formatted_msd_track_title_csv(db_file,
                                      filename='./msd_formatted_titles.csv'):
    """
    Remove and reformat all the msd song titles and store it as csvfile.
    The output csv file is structured as follows :
        msd_track_id, msd_song_title, msd_new_song_title

    Inputs :
            db_file - track_metadata.db file provided by the labrosa
            filename - filename for the output csvfile ('./msd_formatted_titles.csv' by default)


    [NOTE] : tested runtime ~ 33.76 minutes
    """
    def double_format(string):
        s = title_formatter(string)
        return title_formatter(s)

    con = init_connection(db_file)
    query = con.execute("""SELECT track_id, title FROM songs""")
    results = query.fetchall()
    con.close()
    with open(filename, 'w') as csvfile:
        writer = csv.DictWriter(csvfile,
                                fieldnames=['msd_id', 'msd_title', 'title'])
        writer.writeheader()
        cnt = 0
        for track_id, track_name in results:
            print "--%s--" % cnt
            if track_name:
                title = double_format(track_name).encode('utf8')
            writer.writerow({
                'msd_id': track_id,
                'msd_title': track_name,
                'title': title
            })
            cnt += 1
    print "~Done..."
    return
    print("created {} nodes".format(n_nodes))


@print_information
def connect_teams_divisions_conferences(df):
    n_rels = 0
    for _, row in df.iterrows():
        # get entities
        t = Team.nodes.get(name=row["team"])
        d = Division.nodes.get(name=row["division"])
        c = Conference.nodes.get(name=row["conference"])

        # create relationships
        t.division.connect(d)
        d.conference.connect(c)
        n_rels += 2
    print("created {} relationships".format(n_rels))


if __name__ == "__main__":
    # read underlying data
    df = pd.read_csv("./data/teams-divisions-conferences.csv", sep=";")

    # connect to Neo4J
    init_connection()

    # create nodes
    create_teams(df)
    create_divisions(df)
    create_conferences(df)
    connect_teams_divisions_conferences(df)
import random
import sys
from os import path

import pika

sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))

from config import Config
from utils import init_connection

config = Config()

connection = init_connection(connector=pika,
                             host=config.host,
                             port=config.port)

channel = connection.channel()

channel.exchange_declare(exchange='result', type='direct')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

channel.queue_bind(exchange='result', queue=queue_name, routing_key='result')

print(' [*] Waiting for logs. To exit press CTRL+C')


def callback(ch, method, properties, body):
示例#4
0
def clear_graph():
    init_connection()
    n_nodes = db.cypher_query("MATCH (n) RETURN count(n)")[0][0][0]
    n_relations = db.cypher_query("MATCH ()-[r]->() RETURN count(r)")[0][0][0]
    clear_neo4j_database(db)
    print("deleted {} nodes and {} relationships".format(n_nodes, n_relations))