示例#1
0
                        default="tfrecords/pascalvoc2012.tfrecords")
    parser.add_argument('--train_dir',
                        help="where to log training",
                        default="train_log")
    parser.add_argument('--batch_size',
                        help="batch size",
                        type=int,
                        default=10)
    parser.add_argument('--num_epochs',
                        help="number of epochs.",
                        type=int,
                        default=50)
    parser.add_argument('--lr', help="learning rate", type=float, default=1e-6)
    args = parser.parse_args()

    trn_images_batch, trn_segmentations_batch = input_pipeline(
        args.train_record, args.batch_size, args.num_epochs)

    deconvnet = DeconvNet(trn_images_batch,
                          trn_segmentations_batch,
                          use_cpu=False)

    logits = deconvnet.logits

    cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, \
        labels = tf.cast(tf.reshape(deconvnet.y, [-1]), tf.int64), name='x_entropy')

    loss_mean = tf.reduce_mean(cross_entropy, name='x_entropy_mean')

    train_step = tf.train.AdamOptimizer(args.lr).minimize(loss_mean)

    summary_op = tf.summary.merge_all()  # v0.12
        values = tf.reshape(x1, [-1])
        return tf.scatter_nd(indices, values, tf.to_int64(top_shape))

if __name__ == '__main__':

    # Using argparse over tf.FLAGS as I find they behave better in ipython
    parser = argparse.ArgumentParser()
    parser.add_argument('--train_record', help="training tfrecord file", default="tfrecords/pascalvoc2012.tfrecords")
    parser.add_argument('--train_dir', help="where to log training", default="train_log")
    parser.add_argument('--batch_size', help="batch size", type=int, default=10)
    parser.add_argument('--num_epochs', help="number of epochs.", type=int, default=50)
    parser.add_argument('--lr',help="learning rate",type=float, default=1e-6)
    args = parser.parse_args()

    trn_images_batch, trn_segmentations_batch = input_pipeline(
                                                    args.train_record,
                                                    args.batch_size,
                                                    args.num_epochs)

    deconvnet = DeconvNet(trn_images_batch, trn_segmentations_batch, use_cpu=False)

    logits=deconvnet.logits

    cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits, \
        tf.cast(tf.reshape(deconvnet.y, [-1]), tf.int64), name='x_entropy')
    
    loss_mean=tf.reduce_mean(cross_entropy, name='x_entropy_mean')

    train_step=tf.train.AdamOptimizer(args.lr).minimize(loss_mean)

    summary_op = tf.summary.merge_all() # v0.12
示例#3
0
from matplotlib import pyplot as plt
from utils import rgb2yuv,yuv2rgb,input_pipeline,concat_images
from net import color_net



if __name__ == "__main__":
    filenames = glob.glob("demo/*")
    with open("model/vgg16-20160129.tfmodel", mode='rb') as f:
        fileContent = f.read()
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(fileContent)

    batch_size = 4
    num_epochs = 1e+9
    colorimage = input_pipeline(filenames, batch_size, num_epochs=num_epochs)
    grayscale = tf.image.rgb_to_grayscale(colorimage)
    grayscale_rgb = tf.image.grayscale_to_rgb(grayscale)
    grayscale_yuv = rgb2yuv(grayscale_rgb)
    grayscale = tf.concat([grayscale, grayscale, grayscale],3)

    
    tf.import_graph_def(graph_def, input_map={"images": grayscale})
    graph = tf.get_default_graph()

   
    # Saver.
    with tf.Session() as sess:
        saver = tf.train.import_meta_graph('checkpoints/color_net_model200500.ckpt.meta')
        saver.restore(sess, "checkpoints/color_net_model200500.ckpt")
示例#4
0
def just_train():
    logdir = os.path.join(board_logs_path,
                          datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
    low_resolution_shape = (64, 64, 3)
    high_resolution_shape = (256, 256, 3)
    dataloader = iter(
        input_pipeline(training_images_path, 1, high_resolution_shape[:2],
                       low_resolution_shape[:2]))
    # Build and compile VGG19 network to extract features
    epochs = 30001
    batch_size = 1
    vgg = build_vgg()
    gan, generator, discriminator = build_gan()
    writer = tf.summary.create_file_writer(logdir)

    for epoch in range(epochs):
        """
        Train the discriminator network
        """

        # Sample a batch of images
        # high_resolution_images, low_resolution_images = next(highres_dataloader) , next(lowres_dataloader)
        high_resolution_images, low_resolution_images = next(dataloader)

        # Generate high-resolution images from low-resolution images
        generated_high_resolution_images = generator.predict(
            low_resolution_images)

        # Generate batch of real and fake labels

        # real_labels = np.ones((batch_size, 16, 16, 1))
        # fake_labels = np.zeros((batch_size, 16, 16, 1))

        real_labels = np.ones((batch_size, 1))
        fake_labels = np.zeros((batch_size, 1))

        # Train the discriminator network on real and fake images
        d_loss_real = discriminator.train_on_batch(high_resolution_images,
                                                   real_labels)
        d_loss_fake = discriminator.train_on_batch(
            generated_high_resolution_images, fake_labels)

        # Calculate total discriminator loss
        d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

        # print("d_loss:", d_loss)
        """
        Train the generator network
        """

        # Sample a batch of images
        high_resolution_images, low_resolution_images = next(dataloader)

        # Extract feature maps for real high-resolution images
        image_features = vgg.predict(high_resolution_images)

        # Train the generator network
        g_loss = gan.train_on_batch(
            [low_resolution_images, high_resolution_images],
            [real_labels, image_features])

        # print("g_loss:", g_loss)

        print("Epoch {} : g_loss: {} , d_loss: {}".format(
            epoch, g_loss[0], d_loss[0]))

        # Sample and save images after every 100 epochs
        with writer.as_default():
            tf.summary.scalar('g_loss', g_loss[0], step=epoch)
            tf.summary.scalar('d_loss', d_loss[0], step=epoch)
        writer.flush()

        print("Epoch {}:  Gloss : {} , Dloss {}".format(
            epoch + 1, g_loss, d_loss))
        if (epoch) % 100 == 0:

            high_resolution_images, low_resolution_images = next(dataloader)
            generated_images = generator.predict_on_batch(
                low_resolution_images)

            for index, img in enumerate(generated_images):
                save_images(res_im_path + "img_{}_{}".format(epoch, index),
                            low_resolution_images[index],
                            generated_images[index],
                            high_resolution_images[index])

        if (epoch) % 1000 == 0:
            # Save models
            generator.save_weights(models_path +
                                   "generator_{}.h5".format(epoch))
            discriminator.save_weights(models_path +
                                       "discriminator_{}.h5".format(epoch))