示例#1
0
def main():
    """
        主函数
    """
    # 准备数据集
    train_data, test_data = utils.prepare_data()

    # 查看数据集
    utils.inspect_dataset(train_data, test_data)

    # 特征工程处理
    # 构建训练测试数据
    X_train, X_test = utils.do_feature_engineering(train_data, test_data)

    print('共有{}维特征。'.format(X_train.shape[1]))

    # 标签处理
    y_train = train_data['label'].values
    y_test = test_data['label'].values

    # 数据建模及验证
    print('\n===================== 数据建模及验证 =====================')
    nb_model = GaussianNB()
    nb_model.fit(X_train, y_train)
    y_pred = nb_model.predict(X_test)

    print('准确率:', accuracy_score(y_test, y_pred))
    print('AUC值:', roc_auc_score(y_test, y_pred))
示例#2
0
文件: main.py 项目: liufei2606/code
def main():
    """
        主函数
    """
    # 加载数据
    raw_data = pd.read_csv(os.path.join(config.dataset_path,
                                        'charging_pile.csv'),
                           index_col='id')

    # 分割数据集
    train_data, test_data = train_test_split(raw_data,
                                             test_size=1 / 4,
                                             random_state=10)

    # 数据查看
    utils.inspect_dataset(train_data, test_data)

    # 特征工程
    print('\n===================== 特征工程 =====================')
    X_train, y_train = utils.transform_data(train_data)
    X_test, y_test = utils.transform_data(test_data)

    # 构建训练测试数据
    # 数据建模及验证
    print('\n===================== 数据建模及验证 =====================')
    model_name_param_dict = {'kNN': [5, 11, 15], 'LR': [0.1, 1, 10]}

    # 比较结果的DataFrame
    results_df = pd.DataFrame(columns=['Accuracy (%)', 'Time (s)'],
                              index=list(model_name_param_dict.keys()))
    results_df.index.name = 'Model'
    for model_name, param_range in model_name_param_dict.items():
        _, best_acc, mean_duration = utils.train_test_model(
            X_train, y_train, X_test, y_test, param_range, model_name)
        results_df.loc[model_name, 'Accuracy (%)'] = best_acc * 100
        results_df.loc[model_name, 'Time (s)'] = mean_duration

    results_df.to_csv(os.path.join(config.output_path, 'model_comparison.csv'))

    # 模型及结果比较
    print('\n===================== 模型及结果比较 =====================')

    plt.figure(figsize=(10, 4))
    ax1 = plt.subplot(1, 2, 1)
    results_df.plot(y=['Accuracy (%)'],
                    kind='bar',
                    ylim=[60, 100],
                    ax=ax1,
                    title='Accuracy(%)',
                    legend=False)

    ax2 = plt.subplot(1, 2, 2)
    results_df.plot(y=['Time (s)'],
                    kind='bar',
                    ax=ax2,
                    title='Time(s)',
                    legend=False)
    plt.tight_layout()
    plt.savefig(os.path.join(config.output_path, 'pred_results.png'))
    plt.show()
示例#3
0
文件: main.py 项目: ustbxyls/GitRepo
def main():
    """
        主函数
    """
    # 准备数据集
    train_data, test_data = utils.prepare_data()

    # 查看数据集
    utils.inspect_dataset(train_data, test_data)

    # 特征工程处理
    # 构建训练测试数据
    X_train, X_test = utils.do_feature_engineering(train_data, test_data)

    print('共有{}维特征。'.format(X_train.shape[1]))

    # 标签处理
    y_train = train_data['label'].values
    y_test = test_data['label'].values

    # 数据建模及验证
    print('\n===================== 数据建模及验证 =====================')
    nb_model = GaussianNB()
    nb_model.fit(X_train, y_train)
    y_pred = nb_model.predict(X_test)

    print('准确率:', accuracy_score(y_test, y_pred))
    print('AUC值:', roc_auc_score(y_test, y_pred))
def main():
    # Loading Data
    cleaned = pd.read_csv(os.path.join(config.dataset_path, 'cleaned.csv'))
    cleaned = cleaned[config.feat_cols]
    
    raw_data = cleaned[pd.isna(cleaned.y)==False]
    valid = cleaned[pd.isna(cleaned.y)]

    # Cleaning Data

    # Splitting Data
    train_data, test_data = train_test_split(raw_data, test_size=1/4, random_state=10)
    y_train = train_data['y'].values
    y_test = test_data['y'].values

    train_data = train_data.drop('y', axis=1)
    test_data  = test_data.drop('y', axis=1)
    
    

    # Checking Data
    utils.inspect_dataset(train_data, test_data)

    # Feature Engineering
    print('\n===================== Feature Engineering =====================')
    X_train, label_encs, onehot_enc, scaler, pca = utils.transform_train_data(train_data) 
    X_test = utils.transform_test_data(test_data, label_encs, onehot_enc, scaler, pca)
    X_valid = utils.transform_test_data(valid, label_encs, onehot_enc, scaler, pca)
    
    # Testing
    print('\n===================== Modeling =====================')
    model_name_param_dict = {'LR':    LinearRegression(),
                             'Lasso': Lasso(alpha=0.01),
                             'Ridge': Ridge(alpha=0.01),
                             'SVM':SVR(),
                             'SGD':SGDRegressor()
                             }

    # Create tables
    results_df = pd.DataFrame(columns=['MSE', 'Time (s)'],
                              index=list(model_name_param_dict.keys()))
    results_df.index.name = 'Model'
    for model_name, model in model_name_param_dict.items():
        _, best_score, mean_duration = utils.train_test_model(X_train, y_train, X_test, y_test, model_name, model)
        results_df.loc[model_name, 'MSE'] = best_score
        results_df.loc[model_name, 'Time (s)'] = mean_duration

    results_df.to_csv(os.path.join(config.output_path, 'table.csv'))
    
    lasso = Ridge(alpha=0.01)
    lasso.fit(X_train, y_train)
    predict = np.exp(lasso.predict(X_valid))
    result = pd.DataFrame(predict)
    result.to_csv('C:\\Users\\alexliuyi\\Documents\\Kaggle\\Home Price\\result.csv')
示例#5
0
def main():
    """
        主函数
    """
    # 加载数据
    raw_data = pd.read_csv(
        os.path.join(config.dataset_path, 'german_credit_data.csv'))

    # 清洗数据
    cln_data = utils.clean_data(raw_data)

    # 分割数据集
    train_data, test_data = train_test_split(cln_data,
                                             test_size=1 / 4,
                                             random_state=10)
    y_train = train_data['Label'].values
    y_test = test_data['Label'].values

    # 数据查看
    utils.inspect_dataset(train_data, test_data)

    # 特征工程
    print('\n===================== 特征工程 =====================')
    X_train, label_encs, onehot_enc, scaler, pca = utils.transform_train_data(
        train_data)
    X_test = utils.transform_test_data(test_data, label_encs, onehot_enc,
                                       scaler, pca)

    # 构建训练测试数据
    # 数据建模及验证
    print('\n===================== 数据建模及验证 =====================')
    sclf = StackingClassifier(
        classifiers=[KNeighborsClassifier(),
                     SVC(),
                     DecisionTreeClassifier()],
        meta_classifier=LogisticRegression())

    model_name_param_dict = {
        'kNN': (KNeighborsClassifier(), {
            'n_neighbors': [5, 25, 55]
        }),
        'LR': (LogisticRegression(), {
            'C': [0.01, 1, 100]
        }),
        'SVM': (SVC(probability=True), {
            'C': [0.01, 1, 100]
        }),
        'DT': (DecisionTreeClassifier(), {
            'max_depth': [50, 100, 150]
        }),
        'Stacking': (sclf, {
            'kneighborsclassifier__n_neighbors': [5, 25, 55],
            'svc__C': [0.01, 1, 100],
            'decisiontreeclassifier__max_depth': [50, 100, 150],
            'meta-logisticregression__C': [0.01, 1, 100]
        }),
        'AdaBoost': (AdaBoostClassifier(), {
            'n_estimators': [50, 100, 150, 200]
        }),
        'GBDT': (GradientBoostingClassifier(), {
            'learning_rate': [0.01, 0.1, 1, 10, 100]
        }),
        'RF': (RandomForestClassifier(), {
            'n_estimators': [100, 150, 200, 250]
        })
    }

    # 比较结果的DataFrame
    results_df = pd.DataFrame(columns=['AUC', 'Time (s)'],
                              index=list(model_name_param_dict.keys()))
    results_df.index.name = 'Model'
    for model_name, (model, param_range) in model_name_param_dict.items():
        _, best_score, mean_duration = utils.train_test_model(
            X_train, y_train, X_test, y_test, model_name, model, param_range)
        results_df.loc[model_name, 'AUC'] = best_score
        results_df.loc[model_name, 'Time (s)'] = mean_duration

    results_df.to_csv(os.path.join(config.output_path, 'model_comparison.csv'))

    # 模型及结果比较
    print('\n===================== 模型及结果比较 =====================')

    plt.figure(figsize=(10, 4))
    ax1 = plt.subplot(1, 2, 1)
    results_df.plot(y=['AUC'],
                    kind='bar',
                    ylim=[0, 1],
                    ax=ax1,
                    title='AUC',
                    legend=False)

    ax2 = plt.subplot(1, 2, 2)
    results_df.plot(y=['Time (s)'],
                    kind='bar',
                    ax=ax2,
                    title='Time(s)',
                    legend=False)
    plt.tight_layout()
    plt.savefig(os.path.join(config.output_path, 'pred_results.png'))
    plt.show()