def encode_huffman(model, enc, message, context, bits_per_word, finish_sent=False, device='cpu'): length = len(message) context = torch.tensor(context[-1022:], device=device, dtype=torch.long) prev = context output = context past = None total_num = 0 total_num_for_stats = 0 total_log_probs = 0 total_kl = 0 # in bits total_num_sents = 0 with torch.no_grad(): i = 0 sent_finish = False while i < length or (finish_sent and not sent_finish): logits, past = model(prev.unsqueeze(0), past=past) past = limit_past(past) logits[0, -1, -1] = -1e10 # endoftext can't happen logits[0, -1, 628] = -1e10 # 2 newlines can't happen logits, indices = logits[0, -1, :].sort(descending=True) # Get the top 2**bits options indices = indices[:2**bits_per_word] log_probs = F.log_softmax(logits, dim=-1)[:2**bits_per_word] probs = torch.exp(log_probs) if i >= length: selection = 0 sent_finish = is_sent_finish(indices[0].item(), enc) else: probs_array = probs.cpu().numpy() coding = HuffmanCoding() coding.make_heap_from_array(probs_array) coding.merge_nodes() root = coding.make_codes() #print(message[i:i+10]) while root.token is None: if i >= length or message[i] == 0: root = root.left else: root = root.right i += 1 selection = root.token logq = torch.tensor([ -len(coding.codes[idx]) for idx in range(len(probs_array)) ], dtype=torch.float, device=device) # in bits logq = logq * 0.69315 # in nats q = torch.exp(logq) total_kl += kl(q, logq, log_probs) total_log_probs += log_probs[selection].item() total_num_for_stats += 1 total_num += 1 prev = indices[selection].view(1) output = torch.cat((output, prev)) avg_NLL = -total_log_probs / total_num_for_stats avg_KL = total_kl / total_num_for_stats words_per_bit = total_num_for_stats / i return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit
def encode_arithmetic(model, enc, message, context, finish_sent=False, device='cuda', temp=1.0, precision=16, topk=50000): context = torch.tensor(context[-1022:], device=device, dtype=torch.long) max_val = 2**precision threshold = 2**(-precision) cur_interval = [0, max_val] # bottom inclusive, top exclusive prev = context output = context past = None total_num = 0 total_num_for_stats = 0 total_log_probs = 0 total_kl = 0 # in bits total_entropy_ptau = 0 total_num_sents = 0 with torch.no_grad(): i = 0 sent_finish = False while i < len(message) or (finish_sent and not sent_finish): logits, past = model(prev.unsqueeze(0), past=past) past = limit_past(past) logits[0, -1, -1] = -1e20 # endoftext token can't happen logits[0, -1, 628] = -1e20 # 2 newlines token can't happen logits, indices = logits[0, -1, :].sort(descending=True) logits = logits.double() logits_temp = logits / temp probs_temp = F.softmax(logits_temp, dim=0) log_probs_temp = F.log_softmax(logits_temp, dim=0) log_probs = F.log_softmax(logits, dim=0) # conditions for having reached the end of the message if i >= len(message): selection = 0 sent_finish = is_sent_finish(indices[selection].item(), enc) else: # Cutoff low probabilities that would be rounded to 0 cur_int_range = cur_interval[1]-cur_interval[0] cur_threshold = 1/cur_int_range k = min(max(2, (probs_temp < cur_threshold).nonzero()[0].item()), topk) probs_temp_int = probs_temp[:k] # Cutoff all but top k # Rescale to correct range probs_temp_int = probs_temp_int/probs_temp_int.sum()*cur_int_range # Round probabilities to integers given precision probs_temp_int = probs_temp_int.round().long() cum_probs = probs_temp_int.cumsum(0) # Remove any elements from the bottom if rounding caused the total prob to be too large overfill_index = (cum_probs > cur_int_range).nonzero() if len(overfill_index) > 0: cum_probs = cum_probs[:overfill_index[0]] # Add any mass to the top if removing/rounding causes the total prob to be too small cum_probs += cur_int_range-cum_probs[-1] # add # Get out resulting probabilities probs_final = cum_probs.clone() probs_final[1:] = cum_probs[1:] - cum_probs[:-1] # Convert to position in range cum_probs += cur_interval[0] # Get selected index based on binary fraction from message bits message_bits = message[i:i+precision] if i+precision > len(message): message_bits = message_bits + [0]*(i+precision-len(message)) message_idx = bits2int(reversed(message_bits)) selection = (cum_probs > message_idx).nonzero()[0].item() # Calculate new range as ints new_int_bottom = cum_probs[selection-1] if selection > 0 else cur_interval[0] new_int_top = cum_probs[selection] # Convert range to bits new_int_bottom_bits_inc = list(reversed(int2bits(new_int_bottom, precision))) new_int_top_bits_inc = list(reversed(int2bits(new_int_top-1, precision))) # -1 here because upper bound is exclusive # Consume most significant bits which are now fixed and update interval num_bits_encoded = num_same_from_beg(new_int_bottom_bits_inc, new_int_top_bits_inc) i += num_bits_encoded new_int_bottom_bits = new_int_bottom_bits_inc[num_bits_encoded:] + [0]*num_bits_encoded new_int_top_bits = new_int_top_bits_inc[num_bits_encoded:] + [1]*num_bits_encoded cur_interval[0] = bits2int(reversed(new_int_bottom_bits)) cur_interval[1] = bits2int(reversed(new_int_top_bits))+1 # +1 here because upper bound is exclusive # Gather statistics total_log_probs += log_probs[selection].item() q = probs_final.double()/probs_final.sum() logq = q.log() total_kl += kl(q, logq, log_probs[:len(q)]) total_entropy_ptau += entropy(probs_temp, log_probs_temp) total_num_for_stats += 1 # Update history with new token prev = indices[selection].view(1) output = torch.cat((output, prev)) total_num += 1 #print(enc.decode(prev.tolist()), message_bits[:num_bits_encoded]) # For text->bits->text partial = enc.decode(output[len(context):].tolist()) if '<eos>' in partial: break avg_NLL = -total_log_probs/total_num_for_stats avg_KL = total_kl/total_num_for_stats avg_Hq = total_entropy_ptau/total_num_for_stats words_per_bit = total_num_for_stats/i return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit, avg_Hq
def encode_block(model, enc, message, context, block_size, bin2words, words2bin, finish_sent=False, device='cpu'): length = len(message) context = torch.tensor(context[-1022:], device=device, dtype=torch.long) prev = context output = context past = None total_num = 0 total_num_for_stats = 0 total_log_probs = 0 total_kl = 0 # in bits total_num_sents = 0 with torch.no_grad(): i = 0 sent_finish = False while i < length or (finish_sent and not sent_finish): logits, past = model(prev.unsqueeze(0), past=past) past = limit_past(past) logits[0, -1, -1] = -1e10 # endoftext can't happen logits[0, -1, 628] = -1e10 # 2 newlines can't happen logits = logits[0, -1, :] log_probs = F.log_softmax(logits, dim=-1) filtered_logits = logits.clone() filtered_logits[:] = -1e10 # first set all to 0 if i >= length: _, indices = logits.sort(descending=True) sent_finish = is_sent_finish(indices[0].item(), enc) else: # First calculate logq logq = logits.clone() logq[:] = -1e10 # first set all to 0 for bin_val in range(2**block_size): filtered_logits = logits.clone() filtered_logits[:] = -1e10 # first set all to 0 available_tokens = bin2words[bin_val] filtered_logits[available_tokens] = logits[ available_tokens] filtered_logits, indices = filtered_logits.sort( descending=True) logq[indices[0]] = -block_size # in bits logq = logq * 0.69315 # in nats q = torch.exp(logq) # Then find the actual word for the right bin m_part = message[i:i + block_size] filtered_logits = logits.clone() filtered_logits[:] = -1e10 # first set all to 0 available_tokens = bin2words[bits2int(m_part)] filtered_logits[available_tokens] = logits[available_tokens] filtered_logits, indices = filtered_logits.sort( descending=True) total_kl += kl(q, logq, log_probs) total_log_probs += log_probs[indices[0]].item() i += block_size total_num_for_stats += 1 total_num += 1 prev = indices[0].view(1) output = torch.cat((output, prev)) avg_NLL = -total_log_probs / total_num_for_stats avg_KL = total_kl / total_num_for_stats words_per_bit = total_num_for_stats / i return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit